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Abstract
Background  Sexual differences across molecular levels profoundly impact cancer biology and outcomes. Patient 
gender significantly influences drug responses, with divergent reactions between men and women to the same 
drugs. Despite databases on sex differences in human tissues, understanding regulations of sex disparities in cancer is 
limited. These resources lack detailed mechanistic studies on sex-biased molecules.

Methods  In this study, we conducted a comprehensive examination of molecular distinctions and regulatory 
networks across 27 cancer types, delving into sex-biased effects. Our analyses encompassed sex-biased competitive 
endogenous RNA networks, regulatory networks involving sex-biased RNA binding protein-exon skipping events, 
sex-biased transcription factor-gene regulatory networks, as well as sex-biased expression quantitative trait loci, 
sex-biased expression quantitative trait methylation, sex-biased splicing quantitative trait loci, and the identification 
of sex-biased cancer therapeutic drug target genes. All findings from these analyses are accessible on SexAnnoDB 
(https://ccsm.uth.edu/SexAnnoDB/).

Results  From these analyses, we defined 126 cancer therapeutic target sex-associated genes. Among them, 9 genes 
showed sex-biased at both the mRNA and protein levels. Specifically, S100A9 was the target of five drugs, of which 
calcium has been approved by the FDA for the treatment of colon and rectal cancers. Transcription factor (TF)-gene 
regulatory network analysis suggested that four TFs in the SARC male group targeted S100A9 and upregulated 
the expression of S100A9 in these patients. Promoter region methylation status was only associated with S100A9 
expression in KIRP female patients. Hypermethylation inhibited S100A9 expression and was responsible for the 
downregulation of S100A9 in these female patients.

Conclusions  Comprehensive network and association analyses indicated that the sex differences at the 
transcriptome level were partially the result of corresponding sex-biased epigenetic and genetic molecules. Overall, 
SexAnnoDB offers a discipline-specific search platform that could potentially assist basic experimental researchers or 
physicians in developing personalized treatment plans.
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Background
Accumulating evidence indicates that the difference in 
genetic and molecular characteristics between males 
and females affects cancer incidence, prognosis, and 
treatment responses [1, 2]. For example, females car-
rying the MDM2 SNP309G variant, who evade cancer, 
uniquely experience extended longevity. This aligns with 
elevated MDM2 levels, which weaken the effectiveness of 
the p53 stress response but prolong the period of stem 
cell repopulation among survivors. This correlation was 
observed in female centenarians carrying one or two cop-
ies of this allele, while there was no discernible associa-
tion among males [3, 4]. An essential observation is the 
association between sex disparity and the methylation 
status of genes encoding components of the p53 pathway. 
This relationship is particularly evident in gastric cancer 
cases at stages II and III, underscoring the peril posed by 
heightened methylation levels of p53 pathway genes. Spe-
cifically, within a wild-type TP53 context, males exhibit a 
heightened risk, correlated with the methylation-induced 
disruption of three genes within the p53 pathway. In 
contrast, females demonstrate lower rates of methyla-
tion, consequently experiencing a reduced risk of gastric 
cancer [5]. Several studies have successfully identified 
differential sex-biased molecular patterns using muti-
omics data [6–9]. Currently, there are several studies 
on sex differences in human tissues including Gender-
medDB, SDC, SAGD, and Janusmed Sex and Gender [8, 
10–13]. GendermedDB provided a search engine for sex 
and gender-specific publications. SAGD provided the 

sex-associated genes from transcriptomes of 21 species. 
SDC provides survival and phenotype, molecular dif-
ferences, signatures, enrichment pathways, and therapy 
response. Janusmed Sex and Gender provides informa-
tion about more than 400 drug substances within several 
therapeutic areas. While much research has focused on 
understanding the influence of gene expression levels and 
DNA mutation on sex-specific adaptation, other regula-
tory mechanisms have received less attention. Abnormal 
regulation of alternative splicing and RNA editing, often 
dysregulated in cancer, has been highlighted in numerous 
studies. In our research, we not only explore sex-biased 
gene expression regulation but also analyze sex-biased 
alternative splicing regulation and RNA editing events. 
Through comprehensive analyses of sex-biased regula-
tion, we have developed SexAnnoDB, a user-friendly 
website tailored to researchers investigating cancer and 
sex differences. SexAnnoDB serves as a valuable resource 
and reference for extensive annotations of sex-difference-
related regulations of various molecules in cancer. This 
study aims to advance the development of gender-related 
personalized precision medicine for cancer patients.

To comprehend the landscape of regulatory sex dif-
ferences between males and females, we conducted a 
comprehensive analysis of molecules at various levels 
across different cancer types. Our study focused on can-
cer types with a minimum of five patients in each gender 
group, as per The Cancer Genome Atlas (TCGA). The 
molecules examined spanned multiple levels, encom-
passing the genome (single nucleotide variants, SNVs, 

Plain language summary
Sexual variations at the molecular level have a profound impact on cancer biology and outcomes, influencing 
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SexAnnoDB identified 4,328 genes exhibiting sex-biased signatures, with 126 of these genes being implicated as 
cancer therapeutic targets.
SexAnnoDB provided a comprehensive examination of regulatory networks across 27 cancer types, delving into 
sex-biased effects.
SexAnnoDB is the first one to provide sex-biased alternative splicing regulation and offer potential sex-related 
alternative splicing markers.
SexAnnoDB offers a discipline-specific search platform that could potentially assist basic experimental researchers 
or physicians in developing personalized treatment plans.

Keywords  Sex difference, Cancer, Multi-omics, Sex-biased regulatory network



Page 3 of 17Yang et al. Biology of Sex Differences           (2024) 15:64 

and single nucleotide polymorphisms, SNPs), the epig-
enome (DNA methylation), the transcriptome (mRNA, 
lncRNA, miRNA, exon skipping events, and RNA editing 
events), and the proteome (protein). For each molecular 
signature, we employed multiple systematic and bioin-
formatic analyses. These included investigations into sex-
specific differential expression, sex-biased expression, 
sex-related transcription factor (TF)-gene expression 
regulations (TF-gene regulations), sex-related RNA bind-
ing protein (RBP)-exon skipping (ES) regulations (RBP-
ES regulations), sex-biased competing endogenous RNA 
regulations (ceRNAs), and various types of sex-biased 
quantitative trait loci studies.

From our analyses, we identified 4,328 genes exhibit-
ing sex-biased signatures, with 126 of these genes being 
implicated as cancer therapeutic targets. In the realm of 
sex-related regulation, we scrutinized 340,415 sex-biased 
TF-gene regulation pairs, 56,185 sex-biased RBP-ES 
regulation pairs, and 23,836 sex-biased ceRNAs. Addi-
tionally, we examined 1,654,515 sex-biased expression 
quantitative trait loci (eQTL) pairs, 76,615 sex-biased 
splicing quantitative trait loci (sQTL) pairs, 765,863 
sex-biased expression quantitative trait methylation 
(eQTM) pairs, and 9,442 sex-biased splicing quantitative 
trait methylation (sQTM) pairs to elucidate variant and 
methylation effects at the transcriptome level (Fig.  1). 
Subsequently, for the identified 4,328 genes exhibiting 
sex-biased signatures, we conducted manual curation of 
PubMed articles to collate sex-related reports from previ-
ous studies. All such information is accessible and down-
loadable on the SexAnnoDB website (https://ccsm.uth.
edu/SexAnnoDB).

Materials and methods
Data preparation
To explore the sex differences in cancer, we first down-
loaded the multi-omics data and clinical data from the 
cancer genome atlas (TCGA, https://portal.gdc.cancer.
gov/) of 27 cancer types [14]. For further analysis, we 
categorized the patients into four groups: male tumor 
samples, female tumor samples, male normal samples, 
and female normal samples based on gender information. 
Only the group has at least five patients saved for further 
analysis (Supplementary Fig.  S1A, Supplementary Table 
1). Then, we collected alternative splicing events infor-
mation on TCGA from the study by Kahles et al. (https://
gdc.cancer.gov/about-data/publications/PanCanAtlas-
Splicing-2018) [15]. Finally, RNA editing events infor-
mation from CAeditome [16] was downloaded to study 
the sex difference of RNA editing between the male and 
female tumor groups.

Analysis somatic mutation data
We obtained the single nucleotide variants data (MAF 
files) and somatic copy number variations (CNVs) from 
TCGA. First, filter out the samples with > 1,000 muta-
tions in their exomes. Only mutations with mutation 
frequency bigger than 5% were using mafCompare() to 
identify the sex-biased mutation with p-value < 0.05 [17]. 
Then, we conducted functional enrichment analysis using 
Enrichr [18] to infer potentially involved biological path-
ways of sex-biased mutation genes.

Analysis of DNA methylation
Wilcoxon test and the following Benjamini-Hochberg 
false discovery rate for multiple testing were applied for 
CpG sites. Differentially methylated CpGs were reported 
if the mean methylation difference was > 0.1 with a 
p.adjuest of 5%. We also annotated the CpG sites into 
a promoter, enhancer, coding sequence region (CDS), 
untranslated regions (UTR), and gene body region based 
on the position of CpG sites.

Analysis of gene/lncRNA/miRNA expression
For the analysis of gene/lncRNA/miRNA expression, we 
filter out the genes that have missing values in more than 
20% of patients and require an average expression bigger 
than 1 of each cancer type. For each compare group, we 
ran DESeq2 [19] and performed differentially expressed 
lncRNAs/mRNAs/miRNAs analyses of individual cancer 
types (|log2FC|>1 and p.adjusted < 0.05).

Analysis of RNA A-to-I editing events
Differential RNA editing events were identified based 
on significantly different editing frequencies (P < 0.05) 
determined using the Wilcoxon test, followed by multiple 
testing correction using the Benjamini-Hochberg false 
discovery rate. Subsequently, we utilized the annotation 
file from CAeditome to assess the deleterious effects of 
RNA editing events on protein functions and RNA end-
ing effects to miRNAs.

Analysis of exon skipping events
We first excluded exon skipping events with missing val-
ues in over 20% of patients and required an average gene 
expression with exon skipping events exceeding 1 for 
each cancer type. Then, we applied the Wilcoxon test to 
analyze exon skipping events, followed by Benjamini-
Hochberg false discovery rate correction for multiple 
testing. Differential ES events were identified if the mean 
differential percent spliced in (PSI) value was greater 
than 0.1, with a p.adjust of 5%. To assess the effects of 
exon skipping on open reading frames (ORF) and pro-
tein functions, we utilized the annotation file from Exon-
skipDB [20].

https://ccsm.uth.edu/SexAnnoDB
https://ccsm.uth.edu/SexAnnoDB
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018
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Analysis of protein expression
The Wilcoxon test and the following Benjamini-Hoch-
berg false discovery rate for multiple testing were 
applied for CpG sites, ES events, RNA editing events, 
and proteins. For the differential protein, we require the 
p.adjuest < 0.05.

Define sex-specific differential signatures and sex-biased 
signatures in cancer
Sex-specific differential signatures in cancer indicate 
molecular changes between tumor and normal tissues 
based on patient gender. Male-specific molecules vary in 
male tumor vs. normal tissues, while female-specific mol-
ecules vary in female tissues. Sex-biased signatures differ 
only between male and female tumors (Supplementary 

Fig. 1  Overview of SexAnnoDB. The molecules used to explore the sex difference in cancer include the genome level (single nucleotide variant, single-
nucleotide polymorphisms), epigenome level (DNA methylation), transcriptome level (mRNA, lncRNA, miRNA, exon skipping events, and RNA editing 
events), and proteome level (protein). The analyses performed to explore the sex-biased regulations in cancer include differential analysis for each con-
dition group, sex-biased network analysis, sex-biased quantitative trait loci studies, functional enrichment analysis, and drug-disease information. For 
detailed information on sex-related regulations, SexAnnoDB offers accessible and downloadable results. Visit https://ccsm.uth.edu/SexAnnoDB/ for more 
details

 

https://ccsm.uth.edu/SexAnnoDB/
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Fig.  S1B). Then, we conducted functional enrichment 
analysis using Enrichr [18] to identify potential bio-
logical pathways associated with these gender-specific 
molecules.

Sex-biased expression quantitative trait loci (eQTL) and 
sex-biased exon skipping-specific splicing quantitative 
trait loci (sQTL)
A genotype was removed for each SNP site if its read 
depth (DP) was less than 10 or genotype quality (GQ) 
was less than 20. Additionally, each SNP should be bi-
allelic. Then we filter out variants that did not meet the 
Hardy–Weinberg equilibrium (HWE-P > 10 − 6); and 
low minor allele frequency (MAF < 0.5). Furthermore, 
the quantitative trait loci studies require no less than 50 
patients. To identify the sex-biased cis-eQTLs and sex-
biased cis-sQTLs, we first filtered out the low expressed 
gene (FPKM < 1). Then, the R package MatrixeQTL 2.3 
[21] was used to perform the eQTL/sQTL analysis and 
required FDR < 0.05. To control potential confounding 
factors such as age of death, age_at_index, race, and age_
at_diagnosis, we included these variables in the analysis 
as covariates. Cis-eQTLs and cis-sQTLs were defined 
if the SNP were within 100 kb from the gene transcrip-
tional start site (TSS) or skipped exon region (Supple-
mentary Figs.  S2,S3). Finally, the sex-biased cis-eQTLs/
cis-sQTLs were selected if only significant in one sex 
group or showed opposite regulations between male and 
female patients.

Sex-biased exon skipping-specific splicing quantitative 
trait methylation(sQTM) and sex-biased expression 
quantitative trait methylation(eQTM)
To identify the sex-biased cis-sQTMs and sex-biased 
cis-eQTMs, we first categorized the patients into three 
groups based on the beta value(β) of each CpG site, 
including low methylation (0 ~ 0.2), middle methylation 
(0.2 ~ 0.6), and high methylation (0.6 ~ 1.0) groups. Then 
R package MatrixeQTL was used to identify the sQTM 
pairs and eQTM pairs and required FDR < 0.05. To con-
trol potential confounding factors such as age of death, 
age_at_index, race, and age_at_diagnosis, we included 
these variables in the analysis as covariates. Here, we 
defined cis-sQTM/cis-eQTM as CpG sites located in 
[-100 kb, 100 kb] region of TSS and ES events. Then, we 
categorized the CpG sites into distant upstream, proxi-
mal upstream, skipped exon region, proximal down-
stream, and distant downstream groups based on the 
position of CpG sites. Finally, the sex-biased cis-eQTMs/
cis-sQTMs were selected if the cis- eQTMs/cis-sQTMs 
only significant in one sex group or showed opposite reg-
ulations between male and female patients (Supplemen-
tary Fig. S3).

Analysis of competitive endogenous RNAs(ceRNAs) 
network
To explore the sex-biased ceRNA regulations, we pre-
dicted lncRNA–miRNA interaction pairs based on 
LncBase v3.0 [22] predicted databases. Subsequently, 
miRTarBase Release 9.0 [23], miRDB 6.0 [24], and Tar-
getScan huam 8.0 [25] databases were used to identify 
miRNA–mRNA interaction pairs. Target mRNAs recog-
nized by at least two databases were selected as candidate 
genes. Finally, we integrated the interaction between sex-
biased miRNAs and sex-biased lncRNAs or sex-biased 
mRNAs to construct a sex-biased ceRNA regulatory 
network.

Analysis of transcription factor-gene regulatory network
We used PANDA [26] in R package to infer gene regu-
latory network models on each condition group of each 
cancer type. To compare those network models between 
different condition groups, we used the function panda.
diff.edges() in and 0.98 as the threshold for the differen-
tial edges [27]. Specifically, we first downloaded posi-
tion weight matrices (PWMs) for Homo sapiens motifs 
of TFs from CIS-BP 2.0 [28] and mapped PWMs to gene 
promoter regions using FIMO 5.5.3 (p-value < 1e-4) 
[29]. Then, PANDA was used to estimate and optimize 
the network’s structure based on integrating TF bind-
ing motifs, gene expression profiles, and protein-protein 
interactions. The protein-protein interaction (PPI) data 
were generated as described by Sonawane et al [30]. To 
generate the PPI data, the interactions between all TFs in 
the regulatory prior were obtained and weighted based 
on interaction scores from StringDB v11.5 [31]. In detail, 
the PPI data was estimated between all TFs using inter-
action scores from StringDb v11.5, which were scaled to 
be within a range of [0,1], where self-interactions were 
set equal to one. Finally, sex-biased TF-gene edges were 
selected based on the differential edges analysis, one 
female-biased TF-gene edge was identified if the thresh-
old of the female tumor network was bigger than 0.98 and 
the threshold of the male tumor was no bigger than 0.98.

Analysis of RNA binding protein-exon skip events 
regulatory network
We first mapped the Homo sapiens PWM motifs of 
RBPs from CisBP-RNA 0.6 [32] to skipped exon regions 
of exon skip events (Supplementary Fig. S2) using FIMO 
(p-value < 1e-4) to get the RBP-ES interaction. Then, 
the RBP-ES network for each condition group was con-
structed using three data types, including RBP binding 
motifs, PSI values of exon skip events and protein-pro-
tein interactions. Finally, we used the function panda.diff.
edges() and 0.98 as a threshold for the differential edges 
to compare those network models between different con-
dition groups.
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Identifying of sex-biased cancer therapeutic drug target 
gene
Firstly, drug-target interactions (DTIs) were extracted 
from DrugBank 5.0 [33], and duplicated DTI pairs were 
excluded. Then, we collected 205 cancer therapeutic tar-
get genes that were targeted by 206 drugs for 40 cancer 
types from the National Cancer Institute (https://www.
cancer.gov/about-cancer/treatment/drugs/cancer-type). 
All drugs were grouped using Anatomical Therapeutic 
Chemical (ATC) classification system codes. Last, dis-
ease-genetic information was extracted from DisGeNET 
v7.0 [34]. Finally, 131 drug target genes were associated 
with at least one type of sex-biased signature, and 126 
were cancer therapeutic target genes.

Manual curation of PubMed articles
For 4,328 genes with sex-biased signatures, PubMed’s 
literature was performed on May 2024 using the search 
expression applied to each gene [35]. Taking S100A9 as 
an example, it is ‘((S100A9 [Title/Abstract]) AND sex dif-
ference [Title/Abstract]))’ and ‘((S100A9 [Title/Abstract]) 
AND sex difference [Title/Abstract]) AND (cancer [Title/
Abstract]))’.

Results
Sex-biased expressed molecular affect cancer progression
To understand the landscape of sex differences between 
males and females, we performed multiple systematic 
and bioinformatic analyses, such as sex-biased expression 
and sex-specific differential expression. From our analy-
ses, we defined 4,328 genes with sex-biased signatures, 
including 298 genes with sex-biased mutations, 1,352 
genes with highly significant sex-biased CpG sites (|dif-
ference beta value| >0.3), 2,114 sex-biased mRNAs, and 
115 genes with sex-biased exon skipping which affect the 
open reading frame, and 461 genes with sex-biased RNA 
editing affect coding regions (Fig.  2A, Supplementary 
Table 2). We performed functional enrichment analysis 
on 4,328 genes and identified several themes among the 
sex-affected pathways. The first group related to can-
cer and oncogenic signaling pathways, including mul-
tiple cancer types. The second group related to cancer 
immune response includes the chemokine signaling path-
way, cytokine-cytokine receptor interaction, viral protein 
interaction with cytokine, and cytokine receptors. The 
third group was the cell proliferation-related pathway 
including growth-factor signaling, cell proliferation path-
ways such as focal adhesion, cell adhesion molecules, NF-
kappa B signaling pathway, PI3K-Akt signaling pathway, 
and central carbon metabolism in cancer (Fig. 2B).

In this work, we identified significant differences in 
gene expression between male and female tumor tis-
sues across multiple cancer types. Specifically, 2114 
genes exhibited differential expression between male and 

female tumors, with 1593 genes showing tumor-specific 
patterns and 521 genes displaying consistent differential 
expression across several cancer types. Furthermore, we 
observed 6,979 genes with distinct expression profiles 
between female tumors and normal female tissue across 
all cancers studied. Among these, the number of genes 
showing female-specific differential expression varied 
widely across cancer types, ranging from 203 to 2,924. 
Similarly, between male tumors and male normal tis-
sues, 298 to 4204 genes showed differential expression 
across the 13 cancer types analyzed (Supplementary 
Fig.  S4). Take S100A9 as an example, S100A9 was the 
target of five drugs, of which the FDA has approved cal-
cium for the treatment of colon and rectal cancers [36]. 
S100A9 has been reported to regulate the behavior of 
cancer cells by inducing pre-metastatic cascades associ-
ated with cancer spread [37]. A previous study showed 
that S100a9 protected male lupus-prone NZBWF1 mice 
from disease development [38]. Our study found that 
S100A9 was differentially expressed between male and 
female patients in four cancer types (BRCA, DLBC, 
KIRP, SARC). Furthermore, through differential analysis 
between male/female tumors and their matched normal 
counterparts, we found that the expression difference of 
S100A9 between tumors and normal counterparts was 
also significantly different in the male and female groups 
(Fig. 2C). These results provide an overview of molecular 
differences between male and female cancer patients and 
imply sexual differentiation affects cancer incidence and 
progression.

Sex-biased somatic mutation data and single nucleotide 
polymorphisms showed different regulatory patterns 
between females and males
Evaluating genetic variants based on sex can reveal 
important sex disparities. Sex-biased effects of variants 
related to cell cycle and apoptosis have been described 
for many cancer types. From our analysis, a total of 
298 genes in 18 cancers show the differential frequency 
between male and female tumor patients. Functional 
enrichment analysis found only 10 cancers sex-biased 
genes enriched in cancer related pathways. For example, 
10 mutation gene showed sex-biased frequency in LIHC. 
Among them, CTNNB1, OBSCN, TP53, ALB and HERC2 
show higher mutation frequency in male patients. BAP1, 
PCLO, TENM1, PIK3CA, PIKCA, and PKHD1L1 show 
higher mutation frequency in female patients. These 
genes enriched in hepatocellular carcinoma, central 
carbon metabolism in cancer, cellular senescence and 
lipid and atherosclerosis (Fig.  3A-B, Supplementary 
Fig.  S1A). By integrating with six-biased gene expres-
sion, 3 genes with sex-biased mutation frequency also 
showed differential expression between male and female 
patients. Specifically, a previous study report CACNA1D 

https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type
https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type
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overexpression and activate voltage-gated calcium chan-
nels in prostate cancer during androgen deprivation [39]. 
CACNA1D has been identified as a potential therapeu-
tic target. It is upregulated in pancreatic cancer cells and 
associated with tumor growth and invasion. In this work, 
CACNA1D was found to show high mutation frequency 
in male SARC patients with a down-regulation transcript 
level. Recognizing and addressing sex differences pat-
terns is essential for delivering personalized and effective 
patient care (Fig. 3C, Supplementary Fig. S5B).

Furthermore, single nucleotide polymorphism is the 
simplest form of DNA variation among individuals [40]. 

They are responsible for the diversity of individuals, drug 
response, and complex and common diseases [41]. SNPs 
can affect alternative splicing by modifying the sequence-
specific binding affinity of the splicing factors to the pre-
mRNAs [42], resulting in splicing quantitative trait locus. 
And may influence promoter activity [40], resulting in the 
expression of quantitative trait locus. To explore the sex-
biased effects of SNPs on gene expression and alterna-
tive splicing, we performed eQTL and sQTL analyses for 
the male and female patients, separately. 1,654,515 sex-
biased cis-eQTLs pairs and 76,615 sex-biased cis-sQTL 
pairs were identified. Of 1,654,515 sex-biased cis-eQTLs, 

Fig. 2  Sex-biased molecular signatures in human cancers. (A)The number of sex-biased signatures and number of sex-biased genes which are drug 
target. (B)Top 20 enriched KEGG pathways of genes which have at least one sex-biased signature. (C)From left to right are the expression of S100A9 in 
four cancers, and pink represents the female tumor patients, blue represents the male tumor patients; the expression of S100A9 five cancers, and pink rep-
resents the female tumor patients, black represents the female normal tissues. the drug and disease information of S100A9. Calcium has been approved 
by the FDA for the treatment of colon and rectal cancers(*p.adjusted < 0.05, **p.adjusted < 0.01, ***p.adjusted < 0.001, ****p.adjusted < 0.001)
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214,335 were found to occur in 2,294 drug target genes 
including 254 cancer therapeutic targets (Supplemen-
tary Fig.  S5C). Based on the position of the SNPs, we 
identified 578, 408, 163, 731, and 430 SNPs located in 
the promoter, enhancer, coding region (CDS), exon, 
and UTR of the gene, and 11,055 SNPs in the gene body 
region. For example, HTR7 promoted laryngeal cancer 
growth through the activation of the PI3K/AKT path-
way [43]. Rs12256605(chr10:9086171, G to C) located in 
the promoter region of HTR7 showed a significant cor-
relation with the expression of HTR7 only in male BLCA 
(Fig. 3D). HTR7 is the drug target of gilteritinib, the sex-
based cis-eQTL regulation of HTR7 may lead to differ-
ent treatment effects of gilteritinib and will help to design 
personalized medicine.

Sex-biased sQTL analysis identified 76,615 sex-biased 
cis-sQTL pairs including 72,349 SNPs and 2,872 ES 
events in 2,256 genes. Furthermore, we overlapped 
the genomic coordinates of exon skipping events and 
SNPs and identified 17 SNPs located in the skipping 
regions of 14 ES events showing the sex-biased cis-
sQTL regulations. For example, SLC2A8 belongs to the 
solute carrier 2  A family [44]. The skipping of exon5 

(exon_skip_499249, chr9:127402556–127402753) in 
SLC2A8 was affected by rs1138739 in THCA female 
group. The mutation of rs1138739 in the skipped exon 
region may lead to exon skipping in female patients, 
resulting in frameshift ORF that may affect the cancer 
progression (Fig. 3E).

DNA methylation-related sex-biased regulations
Methylation appears to influence gene expression and 
splicing patterns by affecting the interactions of DNA 
with both chromatin proteins and specific transcription 
factors [45, 46]. Combining the mRNA and DNA meth-
ylation analyses, we identified 1,672 sex-biased CpG sites 
in the gene promoter region of 582 sex-biased genes 
(Fig. 4A, Supplementary Table 3). For example, SRPX is 
a tumor-suppressor gene that was reported to be down-
regulated in a variety of human tumor cells and tissues. A 
previous study reported that Srpx-knockout mice gener-
ated various tumors, including lymphomas, lung cancer, 
and hepatomas [47, 48]. We found SRPX showed differen-
tial expression between male and female tumor patients. 
Our data suggested that total 10 CpG sites located in 
the SRPX promoter region showed higher methylation 

Fig. 3  Sex-biased mutations(A) The number of gene with sex-biased mutation.(B) The functional enrichmentment result of gene with sex-biased muta-
tion for each cancer type.(C) The sex-biased cis-eQTL of rs12256605 and HTR7 in BLCA. (D) The sex-biased cis-sQTL of rs12256605 and exon_skip_499249 
in THCA.
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in female SARC patients inhibiting the expression of 
SRPX in female SARC patients (Fig. 4B, Supplementary 
Fig.  6A). This result is consistent with the established 
role of DNA methylation in gene regulation that hyper-
methylation leads to gene silencing [49].

To further analyze the effect of sex-biased meth-
ylation site, we integrated multi-omics and performed 
eQTM and sQTM analyses for the male and female 
patients. Our analyses identified 764,720 sex-biased 
cis-eQTM and 9,442 sex-biased cis-sQTM. 1,305 sex-
biased cis-eQTMs were found in 338 drug target genes, 
including 38 cancer therapeutic target genes (Supple-
mentary Fig. 5C). Detailly, three CpG sites in CpG island 

(chr1:153260996–153261837) were associated with 
S100A9 expression in the KIRP female group. The high 
methylation in the promoter region inhibits the expres-
sion of S100A9, which may influence S100A9-targeted 
drug resistance and cancer progression in female patients 
(Fig. 4C, Supplementary Fig. S6B).

Methylation at the DNA level can modulate the elonga-
tion rate of RNA polymerase II or the format of a protein 
bridge of splicing factor to affect the exon skipping [50]. 
This work identified 9,442 sex-biased cis-sQTMs, includ-
ing 8,738 CpG sites and 2,008 ES events. Among them, 
27 exon-skipping events occurred in the cancer thera-
peutic target genes. For example, TNK2 was the target 

Fig. 4  DNA methylation-related sex-biased regulations and Sex-biased RNA editing. (A)The number of sex-biased related DNA methylation mediated 
genes. (B) Promoter methylation affected SRPX expression in SARC. Left is the heatmap of 10 CpG sites in SRPX promoter regions. (C) CpG sites associated 
with S100A9 in KIRP. (D) The PSI values of exon_skip_499249 in low methylation (0 ~ 0.2), middle methylation (0.2 ~ 0.6), and high methylation (0.6 ~ 1) 
groups. The patients were categorized into three groups based on the beta value of cg24870846. (E) RNA editing frequence of chr11:61007595 in CD6. 
(F) chr12:68851361 A-to-I editing in CPM 3’UTR. From left to right are the RNA editing frequency of chr12:68851361; the expression of CPM; and the 
mechanism of miRNA binding increase in CPM 3’UTR region through RNA editing variant(*FDR < 0.05, ** FDR < 0.01, ***FDR < 0.001, ****FDR < 0.0001).
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of entrectinib [33], which has been approved to treat 
non-small cell lung cancer and solid tumors in the body 
[51, 52]. Our results showed the inclusion of exon 14 in 
TNK2 (exon_skip_420474, chr3:195867168–195867258) 
was positively correlated with cg24870846 in male LGG 
patients (Fig. 4D). Low methylation of cg24870846 could 
cause the in-frame ORF and result in the loss of the ‘UBA 
domain’, and ‘Activated CDC42 kinase 1 chain’ of TNK2. 
Overall, SexAnnoDB provides epigenetic factors that 
potentially influence gene expression and splicing. These 
factors may affect the downstream regulations of cancer 
progression. All filtered sex-biased cis-eQTMs and sex-
biased cis-sQTMs were shown in SexAnnoDB.

Sex-biased RNA editing affected the protein function and 
gene expression
RNA editing events in coding regions can alter amino 
acid sequences and have a chance to affect protein func-
tions. To study this, we first identified 19,503 RNA edit-
ing site show difference frequency between male and 
female tumor patients. 14 of them in coding region might 
cause the non-synonymous SNV of 12 genes in 9 cancer 
types. Specifically, CD6 is a cell surface glycoprotein on 
human lymphocytes, including T cells and natural killer 
(NK) cells. recent studies strongly suggest that anti-CD6 
should also be evaluated as a new cancer immunotherapy 
[53–55]. In this work, we found an RNA editing events 
in the position of chr11:61007595 show the differential 
frequency between male and female patients in two can-
cer types (SKCM, STAD). The RNA editing leads to the 
S/G changes of SRCRdomain in the CD6 protein (Fig. 4E, 
Supplementary Fig. S6C).

Combining the mRNA and RNA editing analyses, 
we identified 22 sex-biased RNA editing sites of 14 sex-
biased genes(Supplementary Table3). Among them, 6 
RNA editing sites were in 5 gene 3’UTR region. From the 
analysis of A-to-I RNA editing effects on miRNA regula-
tion in CAeditome, 3 RNA editing will cause mRNA to 
gain miRNA binding sites, and 1 RNA editing will cause 
mRNA to lose miRNA binding sites (Supplementary 
Table S1). CPM can significantly inhibit cell viability, ROS 
production, intracellular pH, migration in hypoxic lung 
cancer cells, and angiogenesis of HUVECs under hypoxia 
through the inhibition of APEX1/HIF-1α interaction 
[56]. From our analysis, one RNA editing site in the CPM 
3’UTR region shows higher editing frequency in SARC 
female patients. The editing alternation would cause the 
gain of four miRNAs binding and lead to downregulating 
its expression (Fig. 4F). Overall, the sex-biased RNA edit-
ing event has the potential to lead to protein loss of func-
tion or affect gene expression, which shows it’s potential 
to be a therapy target for precision treatment.

RBP-ES regulatory networks identified the functional ES 
events related to cancer progression
RBPs are indeed primary regulators of splicing events. 
They interact with pre-mRNA molecules to facilitate 
or inhibit splicing, thereby influencing the production 
of mature mRNA transcripts [57]. PANDA is a method 
for estimating gene regulatory networks that were not 
specifically developed for RBP-ES networks, here we 
performed PANDA in 8 RBPs knockdown/out RNA-
seq data to evaluate the performance of PANDA. We 
utilized RNA-seq and eCLIP data to identify the RBP-
ES regulation pairs in RBP knocked. PANDA demon-
strated moderate performance, achieving an AUC of 
0.68 in identifying RBP-ES regulations (Supplementary 
Fig.  7, Supplementary method). Thus, in this work, we 
constructed RBP-ES networks using PANDA based on 
the RBP-ES interaction, expression profiles of RBP, PSI 
values of ES events, and protein-protein interactions to 
study the effects of RPB on ES events in differential gen-
der groups.

Our analyses identified 56,185 sex-biased RBP-ES reg-
ulatory edges, including 18,790 ES events and 74 RBPs. 
Functional annotation of ES events showed that 13,132 
targeting ES events could lead to open reading frame 
(ORF) alternation, of which 4,257 could lead to In-frame 
alternation of ORF and resulted in loss of protein func-
tion. Combined with drug information, we identified 
2,192 targeting ES events appearing in drug target genes. 
324 targeting ES events appeared in cancer therapeu-
tic target genes (Fig.  5A and B). For example, MET lost 
the binding site of E3 ubiquitin ligase CBL through an 
exon 14 skipping event, resulting in an increased expres-
sion level of MET. MET amplification drives the prolif-
eration of tumor cells [58, 59]. From the drug and disease 
annotation, Multiple tyrosine kinase inhibitors, such as 
crizotinib, cabozantinib, and capmatinib have been used 
to treat patients with MET exon 14 skipping. In addi-
tion, crizotinib, cabozantinib, and capmatinib have been 
approved by FDA to treat non-small cell lung cancer 
(NSCLC), non-hodgkin lymphoma (NHL), renal cell can-
cer (RCC), liver cancer. Our result found exon14 skipping 
(exon_skip_470684, chr7:116774880–116775111) of the 
MET gene showed the male-based regulation by MSI1 
in LIHC, UVM, and female-biased regulation by MSI1 
in ESCA, KIRC, PAAD, THCA. These results will help to 
design a personalized medical plan for the patient with 
MET exon 14 skipping (Fig. 5C).

For 72 RBPs related to sex-biased RBP-ES regulation, 
3 RBPs were differentially expressed between male and 
female patients (Supplementary Table S6). For example, 
RBM24 was sex-biased expressed in LIHC and targeted 
10 ES events, 3 of which were frame-shift ES events 
and 5 were in-frame ES events. Among them, exon3 of 
TXN was the target of phenethyl isothiocyanate. We 
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found RBM24 also targeted TXN exon 3 skipping (exon_
skip_505647, chr9:110244777–110244843) in CHOL, 
COAD, KIRC, KIRP, and PAAD female patients and 
PCPG and STAD male patients. The TXN gene encodes 
a protein involved in the process of the regulation of 
the cellular redox state [60]. In cancer cells, increased 
TXN expression increases proliferation and cell survival 
[61, 62]. Exon3 skipping of TXN can cause the in-frame 
alterations of TXN-202, leading to the loss function of 
“Beta strand”, “Chain”, “Disulfide bond”, “Domain”, “Helix”, 
“Modified residue”, “Mutagenesis”, and “Sequence con-
flict” to TXN protein(H9ZYJ2). Therefore, our results 
indicated that the downregulation of RBM24 in female 
LIHC patients could cause the loss of normal function of 
TXN and inhibit cancer progression (Fig. 5D).

TF-gene regulatory network reveals the sex-biased 
expression regulation between female and male patients
Gene expression is controlled by complex networks of 
interacting factors. What’s more, the dysregulation of 
gene regulatory processes can lead to multiple diseases, 
including cancer. TF is one of the most important regu-
lators of gene expression [63–65]. To explore the sex-
biased TF-gene regulation, we constructed TF-gene 
regulatory networks based on TF-promoter interaction 
information, protein-protein interaction, and expres-
sion profiles for male and female patients, respectively 
(Fig. 6A). A total of 340,415 sex-biased edges were iden-
tified, including 169,132 male-biased edges and 171,283 
female edges (Fig. 6B). 590 edges showed sex-biased reg-
ulation across more than 5 cancer types. Combined with 
differential analyses, we found that 243 targeting genes 
were differentially expressed between male and female 
patients. Besides, 71 sex-biased genes with sex-biased 

Fig. 5  Sex-biased RBP-ES regulatory network analysis. (A) The pipeline to identify the functional ES events in the sex-biased RBP-ES network. (B) Number 
of RBP targeting ES events in sex-biased RBP-ES network of individual cancer type. (C) The sex-biased MSI1-exon_skip_470684 edges include two male-
biased edges (LIHC, UVM) and four female-biased edges (ESCA, KIRC, PAAD, THCA). (D) Left: The expression of RBM24 in LIHC. Right: RBM24-ES regulatory 
network in LIHC. (*p. adjusted < 0.05, **p.adjusted < 0.01, ***p.adjusted < 0.001, ****p.adjusted < 0.001)
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TF-gene regulations were also targeted by 491 drugs. 
12 of the targeting sex-biased genes (S100A9, SLAMF7, 
TNFRSF17, CCND1, CD274, TOP2A, HTR2B, CD3D, 
SSTR2, ORM2, ORM1, TNF) have been reported previ-
ously as cancer therapeutic targets (Fig. 6C, Supplemen-
tary Fig. S8,Supplementary Table S7).

In SARC, a total of 289 targeting genes were reported 
as drug targets. Among them, SBK1 and CHRM2 were 
upregulated in male patients, and ADH1C, ADH1B, 
S100A9, CCL11, and KDM5D were upregulated in female 
groups. We found the female-biased genes owned more 
female-biased TF targeting edges and the male-biased 

genes owned more male-biased TF targeting edges. For 
example, S100A9 was differentially expressed between 
male and female SARC patients (Fig. 2C). Our data sug-
gested that four TFs targeting S100A9 in the male group 
were responsible for the upregulation of S100A9 in male 
patients and affected the cancer progression (Fig.  6D). 
This is consistent with the fact that TF targeting the gene 
promoter will promote the gene expression [66]. The 
sex-biased TF-gene network will help us to understand 
the sex difference regulation of the sex-biased genes in 
cancer.

Fig. 6  Sex-biased TF-Gene regulatory network analysis. (A) The pipeline to identify the cancer therapeutic target genes in the sex-biased TF-gene net-
work. (B) The number of sex-biased edges for each cancer type. (C) The number of targeting genes (white bar) and drug-targeted genes (red bar) in the 
sex-biased TF-gene network for each cancer type. (D) Left: the volcano plot of sex-biased genes in SARC. Pink marked as female-biased genes (log2FC< 
− 1 and p.adjusted < 0.05), blue marked as male-biased genes (log2FC > 1 and p.adjusted < 0.05). Right: sex-biased TF-Gene regulatory network of 7 sex-
biased drug targeted genes in SARC
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Sex-biased competitive endogenous RNA network
Competitive endogenous RNAs have revealed a new 
mechanism of interactions among diverse types of RNAs 
and play crucial roles in multiple biological processes 
and the development of neoplasms [67]. We constructed 
sex-biased ceRNAs regulatory networks for sex-biased 
lncRNA, miRNA, and mRNA. Our analyses found that 
25 male-biased mRNAs and 312 female-biased mRNAs 
were involved in ceRNA regulation. Based on the drug 
information, 29 sex-biased mRNAs were drug-targeted 
genes and six (CD38, PGR, ESR1, GABRP, F3, PRKCB) 
of them were targeted by cancer therapeutic drugs 
(Fig. 7A,Supplementary Table S8). For example, ESR1 is 
the target of raloxifene, toremifene, tamoxifen, and ful-
vestrant which are reported to prevent or treat breast 
cancer [33, 68–71] (Fig. 7B). ESR1 mutations are a com-
mon cause of acquired resistance to the backbone of 
therapy in the metastatic hormone receptor-positive 
breast cancer [72–74]. A previous study reported that 
the microRNA hsa-mir-206 decreased endogenous ERα 
mRNA and protein levels in human MCF-7 breast can-
cer cells by acting through two specific hsa-mir-206 tar-
get sites within the 3′-UTR of the human ERα transcript 
[75]. In our study, the hsa-mir-206 was predicted to bind 
to both 3′-UTRs of ESR1 and HAND2-AS1, indicating 
HAND2-AS1 protects ESR1 through competing for the 
miRNA binding sites of hsa-mir-206 in SARC female 
patients (Fig. 7C). In a word, our study identified poten-
tial sex-biased ceRNA regulation, providing insights 
for further research on the molecular mechanisms and 
potential prognosis biomarkers.

Sex effects on cancer therapeutic target genes
To investigate the clinical implications of sex-biased 
molecular signatures, we focused on 2,526 therapeutic 
targets in DrugBank, including 205 cancer therapeutic 
targets of FDA-approved drugs. Across the various mol-
ecule dimensions we examined, we found that 131 drug 
target genes were associated with at least one type of sex-
biased signature, and 126 were cancer therapeutic target 
genes (Supplementary Table S9). Among these genes, 
nine genes (CD274, CD38, CTLA4, EGFR, ERBB3, IL6, 
LCK, PDCD1, and RET) showed sex differences not only 
in mRNA expression but also in protein levels. These 
genes also showed sex-biased cis-eQTLs and cis-eQTMs 
regulation, indicating that sex differences at the tran-
scriptome level are partially the result of corresponding 
sex-biased epigenetic and genetic regulations. Besides, 
four sex-biased exon skipping events in cancer thera-
peutic target genes (FDPS, FGFR1, CDK4, and IMPDH2) 
could cause the loss of partial protein function, which 
may contribute to a differential drug response rate in 
male and female patients (Fig. 8A). Moreover, we found 
six sex-biased genes (EGFR, CDK6, PRKCB, PDCD1, 
KCNH2, FCGR3B, and TOP2A) in BRCA were the thera-
peutic targets of breast cancer (Supplementary Fig.  S9). 
EGFR is one of the first identified important targets of 
these novel antitumor agents [76]. Two drugs (Lapatinib 
and neratinib) for the treatment of breast cancer have 
been evaluated in several studies. Our result showed 
EGFR had differential expression both at the transcrip-
tome level and proteome level, which are particularly 
important in determining sex-biased drug response rates 
(Fig.  8B-E). These results highlight the clinical impor-
tance of sex-biased molecular signatures.

Fig. 7  Sex-biased ceRNAs in human cancers. (A) The pipeline to identify the cancer therapeutic targets in sex-biased ceRNA network. (B)Related drug 
information of ESR1. (C) The expression of HAND2-AS1(lncRNA), hsa-mir-206(miRNA), and ESR1(mRNA) in SARC (*p. adjusted < 0.05, **p.adjusted < 0.01, 
***p.adjusted < 0.001, ****p.adjusted < 0.001)
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Furthermore, from a manual review of the abstracts, 
we found that there are 31 documentaries supporting 40 
genes showing different patterns between females and 
males. Among them, 13 genes (AFP, ASNS, BEX4, BRAF, 
ESR1, FST, KIT, NR3C1, STAT3, TP53, TRPA1, AR, FST) 
were reported to show sex differences in cancer (Supple-
mentary Table 10). Among them, ESR1 is involved in a 
sex-biased competitive endogenous RNA network, ESR1 
competing for the miRNA binding sites of hsa-mir-206 in 

SARC female patients, TP53 shows higher mutation fre-
quency in male LIHC patients, which is consistent with 
the previous research (Fig.  7, Supplementary Fig.  S5A). 
These findings underscore the importance of considering 
sex-specific differences in cancer research, as they shed 
light on distinct genetic patterns and potential molecular 
mechanisms that may contribute to gender-specific vari-
ations in cancer development and progression.

Fig. 8  The sex-biased effect on cancer therapeutic targets. (A) Sex-biased cancer therapeutic drug target genes. The cancer-drug pairs were collected 
from the National Cancer Institute (https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type) and the drug-gene pairs were collected from 
DrugBank. (B)The volcano plot of sex-biased genes in BRCA. Pink marked as female-biased genes (log2FC<–1 and p.adjusted < 0.05), blue marked as 
male-biased genes (log2FC > 1 and p.adjusted < 0.05). (C) The gene expression of EGFR in BRCA. (D) The protein expression of EGFR in BRCA. (E) Cancer-
drug-sex-biased gene information in BRCA (*p. adjusted < 0.05, **p.adjusted < 0.01, ***p.adjusted < 0.001, ****p.adjusted < 0.001)
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Page 15 of 17Yang et al. Biology of Sex Differences           (2024) 15:64 

Discussion
Clinical cancer research indicates that men and women 
showed different responses to drug treatment [77, 78]. 
Understanding the sex-biased regulation related to can-
cer therapeutic target genes will help the basic experi-
mental researchers or physicians develop personalized 
treatment plans. In this study, we performed comprehen-
sive analyses to explore sex-associated molecular differ-
ences in cancer patients. 4,328 genes were found to have 
at least one kind of sex-biased signature and functionally 
enriched in oncogenic, immune response, cell prolifera-
tion, and cancer-related pathways. These enrichments 
imply that the sex-biased signatures participate in the 
cancer progression, which helps to systematically explain 
the sex differences in cancer and facilitates antitumor 
studies and clinical practices. Analyzing these sex-biased 
regulations of cancer types will help to achieve a molec-
ular-level understanding of how sex signatures affect the 
behavior of different cancer types.

Previous studies focus on the mutation and gene 
expression between the male and female groups [8, 
10–12](Supplementary Table S11). However, recently 
the small molecule splicing modulators are currently in 
clinical trials [79, 80]. This paper investigates sex-biased 
exon skipping events and sex-biased RNA-binding pro-
tein-exon skipping (RBP-ES) regulatory network analy-
ses. Differential analysis revealed 121 sex-biased exon 
skipping events, with 70 causing alterations in the open 
reading frame. Additionally, RBP-ES network analysis 
identified 324 RBP-targeted exon skipping events in can-
cer therapeutic target genes associated with sex-biased 
RBP-ES regulation. Although these events did not exhibit 
PSI values between male and female patients, we identi-
fied three sex-biased RBPs in the network related to func-
tional exon skipping events, resulting in ORF alterations 
and partial protein loss of function. We hypothesize that 
these sex biased RBPs may impact drug resistance and 
cancer progression by regulating exon skipping events. 
Furthermore, sQTM and sQTL analyses were conducted, 
revealing differential regulation patterns of exon skipping 
between males and females. Our database is the first one 
incorporating alternative splicing related to sex-biased 
regulation, offering potential sex-related alternative splic-
ing markers.

Currently, male and female patients with the same 
cancer type are often treated similarly regardless of gen-
der. We must accept that these sex differences in cancer 
biology will affect individual responses to therapy. Our 
study reported 126 cancer therapeutic target genes with 
sex-biased molecules and comprehensively compared the 
regulatory networks between male and female patients. 
Understanding the role of sex differences is critical 
not only for understanding health and disease but also 
for personalized and precision medicine [81, 82]. The 

sex-related genes found in each category can provide tai-
lored therapy and better suggestions for drug selection. 
All the above information is included on the SexAnnoDB 
website and is available for download. We believe that 
SexAnnoDB will be routinely used in cancer studies to 
better understand cancer pathogenesis, progression, and 
biology.

Perspectives and significance
In summary, Understanding the sex disparities in gene 
expression and mutation frequencies could have sig-
nificant implications for personalized medicine and the 
development of targeted therapies tailored to specific 
patient populations. Our work identified 4,328 genes 
exhibiting sex-biased signatures, with 126 of these genes 
being implicated as cancer therapeutic targets. SexAn-
noDB provided a valuable resource and reference for 
extensive annotations of sex-difference-related regula-
tions of various molecules in cancer.
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