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Abstract
Background The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal 
gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate 
the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition.

Methods We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points 
spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic 
single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most 
likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes 
whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects.

Results Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, 
neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor 
cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial 
transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the 
most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation.

Conclusion Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene 
and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future 
studies of postnatal hypothalamic gene regulation.

Summary
The hypothalamus is required to initiate puberty and develop secondary sex characteristics. While several 
hypothalamic-expressed genes are known to be essential for puberty, the gene regulatory networks that regulate 
its timing are not well established. Since puberty begins earlier in the male C57BL6/J mice compared to females, 
our study set out to identify puberty-related genes by focussing on genes whose pattern in expression was 
conditional on age and sex. We first used RNA sequencing to examine sex-biased developmental trajectories in 
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Introduction
Puberty is a fundamental period of mammalian devel-
opment when individuals reach sexual maturity. Despite 
being a nearly universal event, pubertal timing within 
the population varies and is known to be influenced by 
genetic and environmental factors [1–4], though much 
of its variation remains unexplained. Rare mutations in 
several genes lead to pubertal disorders such as central 
precocious puberty (CPP), defined as abnormally early 
pubertal initiation, and hypogonadotropic hypogonad-
ism (HH), defined as delayed or absent puberty [5–7]. 
Genome-wide association studies (GWAS) investigating 
the age of menarche in females and age of voice break-
ing in males [8] have identified shared and sex-specific 
sequence variants related to pubertal timing in the gen-
eral population. Furthermore, early puberty is associated 
with an increased risk of later life health outcomes such 
as cancer, diabetes, and cardiovascular disease, while late 
puberty is associated with an increased risk of osteopo-
rosis and mental health disorders [9]. Importantly, envi-
ronmental factors such as diet, body mass index (BMI), 
prenatal growth, and psychosocial experience are associ-
ated with differences in pubertal timing [9]. Due to the 
genetic and environmental impact on pubertal timing 
and development, animal models where genetic and envi-
ronmental background can be controlled, are of great use 
for understanding this process.

Puberty is initiated in the hypothalamus by pulses of 
gonadotropin-releasing hormone (GnRH) increasing in 
frequency and amplitude, which then stimulate the pitu-
itary gland to increase secretion of luteinizing hormone 
(LH) and follicle-stimulating hormone (FSH). This cas-
cade begins an organism-wide feedback loop involving 
many genes, cell types, and gene regulatory mechanisms 

[10]. Previous studies have investigated hypothalamic 
regulation during puberty and have discovered a grow-
ing list of gene-regulatory mechanisms that can directly 
regulate pubertal timing [11]. These studies include the 
epigenetic mechanisms activating and inhibiting puber-
tal onset and spatial transcriptomic programs associated 
with postnatal development in the female rat hypothala-
mus [12, 13].

Puberty is an inherently sex-biased process that results 
in the development of secondary sex characteristics 
in males and females. Additionally, males and females 
undergo pubertal timing at different ages. In humans, 
puberty typically occurs earlier in females, and in some 
rodents (such as the inbred C57BL/6J mouse strain used 
in this study), male mice undergo puberty earlier than 
female mice [14]. Despite the sex-specific physiologi-
cal differences related to puberty in males and females, 
GWAS studies looking for genetic factors related to the 
timing of pubertal onset (age at menarche in females 
and voice breaking in males) revealed that the signifi-
cant genetic variation associated with pubertal timing is 
mostly shared by males and females [15, 16]. For example, 
in humans, the same variant in the LIN28B gene is asso-
ciated with puberty-relevant phenotypes in both males 
and females [16]. Nonetheless, understanding the bio-
logical consequences that specific gene expression pro-
grams have on puberty is complex. For example, Lin28b 
and Lin28a knockout mice revealed sexually dimorphic 
phenotypes related to body weight and pubertal devel-
opment [17]. For this reason, studying the hypothala-
mus in males and females of different species, at various 
developmental stages, and under various environmen-
tal conditions has been essential for understanding how 
pubertal timing is controlled [17].

the mouse hypothalamus, where we tracked gene activity in the hypothalamus at two prepubertal, two peri-
pubertal, and one postpubertal timepoint. To address an inherent limitation of using bulk RNA-seq profiling of 
the hypothalamus, we integrated single-cell RNA sequencing and spatial transcriptomics data to identify which 
cell types most likely give rise to the observed gene expression patterns. Some of the genes we found are part 
of specific pathways related to hormone production, nerve cell activity, and the maturation of support cells in 
the brain (glial cells). By combining bulk RNA-seq data with single cell RNA-seq we inferred an increase in the 
maturation of cells that form the myelin sheath (oligodendrocytes) coinciding with pubertal onset. In summary, 
this study highlights gene expression and cellular composition changes that occur in the hypothalamus during 
postnatal development in a manner conditional on sex. This work should serve as a resource for hypothalamic 
gene regulation during postnatal development in mice.

Highlights
 • Gene expression in the hypothalamus in male and female mice was obtained at five postnatal ages spanning 

pubertal development.
 • A set of genes influenced by sex and age were identified and found to be related to pubertal development.
 • Combining these results with single cell RNA-seq and spatial transcriptomic data we profiled puberty-relevant 

neuronal and glial gene expression signatures.
 • A hypothalamic gene expression resource for male and female mouse was generated to facilitate access to 

this data.
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Identifying genes whose developmental trajectories are 
offset between male and female mice should be enriched 
for candidate genes that influence or are influenced by 
pubertal onset. However, few studies have characterized 
hypothalamic gene expression across the pubertal transi-
tion in both males and females [17]. We previously uti-
lized microfluidic qPCR to measure the expression of the 
mouse orthologs of 178 puberty-related disease genes 
(e.g. Mkrn3, Dlk1) and candidate genes puberty-related 
GWAS associated genes in the hypothalamus, pituitary, 
gonads, pineal gland and liver at prepubertal (PD12 and 
PD22), peripubertal (PD27 and PD32), and postpubertal 
(PD37) times [18]. We found that most temporal gene 
expression changes in the hypothalamus occurred before 
puberty and that relative to the pituitary gland, few sex 
biased genes were detected [8, 9]. Mirroring the pubertal 
onset differences between males and females, the prereq-
uisite puberty genes Gnrh1, Kiss1 and Tac2 increased in 
expression between PD12-22, whereas the same genes in 
females increased later PD22-32 [8]. Together, genome 
wide profiling of hypothalamus gene expression could 
reveal additional genes following similar patterns.

Single cell genomics technologies now allow for the 
ascertainment of gene expression profiles from indi-
vidual cell types within the hypothalamus [2, 19, 8]. For 
example, a scRNA-seq study focusing on the prenatal 
development of the mouse hypothalamus samples several 
timepoints, including two postnatal times points (PD14 
and PD45) [3]. While incredibly valuable, cost restraints 
and technical limitations still limit the number of samples 
profiled and genes detected in a single study. For this rea-
son, computational approaches to integrate scRNA-seq 
data with RNA-seq collected from bulk tissue can allow 
one to harness the advantages of both types of data [5, 6].

In this study, we measured hypothalamic gene expres-
sion in male and female mice at five timepoints spanning 
pubertal transition. We identified genes whose expres-
sion is conditional on both age and sex and found several 
established puberty-related genes as well as additional 
genes whose role in pubertal control requires further 
investigation. Using a hypothalamic snRNA-seq with 
two analogous timepoints to our study [3], we mapped 
the age and sex conditional genes to their most likely 
cell type of origin. From our bulk RNA-seq data, pub-
lished snRNA-seq data and spatial transcriptomics data, 
we inferred that substantial oligodendrocyte expansion 
occurs prior to pubertal onset. To enable the use of this 
gene expression dataset in further studies, we created 
an interactive Shiny App (wilsonlab-sickkids-uoft.shin-
yapps.io/hypothalamus_gene_shiny/) as well as down-
loadable resources. Overall, this integrative analysis of 
the hypothalamic transcriptome incorporating age and 
sex serves as a resource for understanding hypothalamic 
gene regulation during the pubertal transition.

Materials and methods
Animal and tissue collection. We collected the hypo-
thami of 48 C57BL/6J mice at PD12, 22, 27, 32, and 37 
in males and females (4–5 mice per age/sex). Tissue dis-
section and RNA extraction follow the protocol in Hou et 
al., 2017 as this study made use of the same isolated RNA 
[8].

Library preparation and sequencing
RNA-seq libraries were prepared using an automated 
QuantSeq 3’mRNA-seq (Lexogen GmbH, Vienna) and 
Agilent NGS Workstation (Agilent Technologies, Santa 
Clara) at The Centre for Applied Genomics (TCAG) 
(Toronto, Canada) as per the manufacturer’s proto-
col (UTRSeq). The automated QuantSeq 3’mRNA-seq 
library construction was described in detail in Hou et 
al., 2022 [9]. Briefly, 250 ng of total RNA spiked-in with 
ERCC Spike-In Control Mix 1 (Ambion) as per the 
manufacturer’s protocol was used to generate cDNA. 
cDNA was amplified with 17 PCR cycles as determined 
by qPCR analysis using the PCR Add-on kit (Lexogen). 
The resulting libraries were quantified with Qubit DNA 
High Sensitivity assay (ThermoFisher). Fragment sizes 
were analyzed on the Agilent Bioanalyzer using the High 
Sensitivity DNA assay prior to sequencing. Single-read 
50-bp sequencing was performed at TCAG on an Illu-
mina HiSeq2500 Rapid Run or V4 flowcell (Illumina, San 
Diego) with cycles extended to 68 bp.

Read processing
Reads from technical replicates were merged prior to 
downstream analyses. Fastqc (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc/) was used to exam-
ine the quality of sequenced reads. A customized script 
to trim both the polyAs and adapters at the end of the 
reads [9, 10] was used. The script implemented a “back 
search” strategy to account for cases where a mixture of 
adapters and polyAs were seen at the end of the reads. 
In addition, the first 12 nucleotides were trimmed with 
Cutadapt [9, 10] based on the manufacturer’s recom-
mendations. Only reads longer than 36  bp after trim-
ming were used for future analyses. After trimming, 
Fastqc was performed again to examine read quality, and 
over-represented reads, namely reads mapping to BC1 
(brain cytoplasmic 1), were removed. Trimmed and fil-
tered reads were aligned to the genome using a splice-
aware aligner, STAR (version 2.5.1b), with default settings 
except “--outFilterMismatchNoverLmax 0.05” for Quant-
Seq [11]. Quality control (QC) of mapped RNA-seq reads 
was performed using Qualimap version 2.2.1 [21] (Sup-
plementary Table S1). Read signal was visualized with 
the UCSC genome browser [12]. Reads were assigned 
to genes using featureCounts (version 1.5.3) [14] with 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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parameters “ -s 1 -Q 255 -t exon -O”. Gene models were 
obtained from GENCODE M11 [15, 16].

Count processing and evaluation
Counts successfully aligned to GENCODE M11 [15, 16] 
were normalized based on ERCC spike-ins using RUVseq 
[17]. Genes with fewer than 5 reads were removed before 
upper-quartile normalization was completed with the 
betweenLaneNormalization() function [17]. Finally, 
ERCC spike-ins were used to normalize counts using the 
RUVg(), yielding the final normalized count matrix [17]. 
All samples were correlated to one another using Pear-
son’s correlation of all genes before being plotted with the 
ComplexHeatmap package [18]. Genes overlapping the 
RNA-seq and qPCR data of the same samples [8] were 
correlated using Pearson’s correlation analysis. Principal 
component analysis (PCA) of samples was performed 
with the “prcomp()” function [22] before being plotted 
with the ggplot2 package [23].

Differential expression analysis
Pairwise differential gene expression analysis was com-
pleted across ages and sexes. Differentially expressed 
genes were calculated using the DESeq2 R package [24]. 
Genes were considered differentially expressed if they 
had a false discovery rate (FDR)-adjusted p-value < 0.05 
and an absolute-value fold-change 1.5. Sex comparisons 
were completed at each timepoint, while age compari-
sons within each sex were completed between days 12 
and 22, 22 and 27, 27 and 32, and 32 and 37.

Varimax rotation principal component analysis
Principal component analysis (PCA) is a dimensional-
ity reduction technique used to reduce every individual 
mouse’s global gene expression pattern into a smaller 
set of orthogonal vectors [22] (Ncomponents = Nmice = 48). 
Varimax rotation decreases the distance between PCs 
and mice by adjusting the PC axes such that samples will 
more closely align with one varimax rotated PC (vrPC) 
[25]. By leveraging vrPC scores, defined by the location 
of a sample of a PC axis, we identified which vrPCs are 
associated with age, sex, and an age-by-sex interaction by 
completing a two-way ANOVA of timepoint and sex on 
vrPC scores. By leveraging vrPC loadings, defined by the 
association between a gene and PC, we measured which 
genes are represented by individual vrPCs.

Normalized count data and PC scores were used to 
generate varimax-rotated PCs with the “varimax” func-
tion in R [25, 26]. Varimax-rotated PC loadings and 
scores were acquired using the pracma package [25, 26]. 
A loading is a gene’s coefficient to the vrPC, while the 
score is a sample’s coefficient to a rotated vrPC [25, 26]. 
The association between scores, age, and sex was mea-
sured using two-way ANOVA. Multiple-test correction 

using the FDR was applied using the p.adjust() function 
in R [27]. The FDRs of the vrPCs with an associated main 
effect or interaction were plotted with ggplot2 [23]. We 
designated that genes with loading greater than three 
standard deviations from the mean loading are associ-
ated with a vrPC. We picked three standard deviations by 
inspecting a qqplot of loadings with the qqnorm() func-
tion. Genes associated with a vrPC were re-ordered by 
the loading magnitude for downstream analysis.

Pathway and human RNA-seq enrichment analysis
Pathway enrichment of fused gene lists (e.g., PD12 vs. 
PD22, males and females) was completed using the 
ActivePathways R package [28]. Briefly, ActivePathways 
takes the p-values from different related gene lists (e.g., 
PD12 vs. PD22 - males, PD12 vs. PD22 - females) and 
fuses them using Brown’s extension of Fisher’s method 
(i.e., Fisher’s combined probability test) [28]. Then, 
it computes pathway enrichment of each individual 
gene list and the fused gene list using a p-value-ranked 
Hypergeometric test [28]. The resulting statistics pro-
vide pathway enrichments annotated to each DEG list 
and their integrated p-values [28]. In our study, Active-
Pathways yields four levels of enriched pathways: male-
only, female-only, male and female – independent (i.e., 
enriched in males and females without fusing p-val-
ues), and male and female – dependent (i.e., enriched 
in both males and females after fusing p-values). We 
used the “Mouse_GO_AllPathways_no_GO_iea_Sep-
tember_01_2022_symbol.gmt” gene set database from 
(http://download.baderlab.org/EM_Genesets/), which 
systematically curates a gene set list from multiple 
sources (Gene Ontology, Reactome, Panther, etc.) as our 
pathway enrichment database [29].

Pathway enrichment for gene lists without p-val-
ues following a multivariate normal distribution (i.e., 
vrPC-associated genes, oligodendrocyte-pseudotime 
associated genes) was completed using the gProfileR R 
package using an FDR correction, with genes detected 
in the RNA-seq dataset as the custom background and 
with GO: BP, GO: MF, and GO: CC being queried [30]. 
Here, “genes” represent oligodendrocyte-pseudotime 
associated genes or associated loadings ordered by FDR-
adjusted p-value or vrPC loading, respectively. Biologi-
cal pathways identified by integrating developmental 
changes across sexes were completed with ActivePath-
ways [28].

We used the Differential Expression Enrichment Tool 
(DEET) to compare our age-biased DEGs and vrPC-
associated genes to 3162 consistently reprocessed sets of 
DEGs derived from The Cancer Genome Atlas (TCGA), 
Genotype-Tissue Expression Consortium (GTEx), and 
from various studies within the Sequencing Read Archive 
(SRA) [31–35]. We ran the DEET_enrich() function to 

http://download.baderlab.org/EM_Genesets/
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measure which of our age-biased DEG lists and vrPC-
associated genes enriched for publicly available human 
DEG sets. DEET_enrich() also identifies DEG compari-
sons whose overlapping DEGS also has a correlated fold-
change, suggesting that the shared DEGs and pathways 
may be under shared regulation [36]. Correlation plots 
were generated using the DEET_enrichment_plot() with 
default parameters. Lastly, we enriched our neuron-
neuroendocrine mapping age-by-sex associated genes 
with LepRb + cells in the hypothalamus by overlapping 
Trap-seq + genes from Alison et al. [37]. and testing for 
over-representation with a Fisher’s exact test. Pathway 
enrichment plots for ActivePathways, traditional path-
way enrichment, and DEET, were completed using the 
DEET_enrichment_plot() and process_and_plot_DEET_
enrich() functions in DEET [31].

Processing of public hypothalamic scRNA-seq data
Filtered gene-barcode matrix files for the PD14 and 
two PD45 samples were downloaded from the Gene 
Expression Omnibus (GEO) series GSE132355 (P14: 
GSM3860745, P45-rep1: GSM3860746, P45-rep2: 
GSM3860747) [3]. Counts were processed and inte-
grated using the process_dgTmatrix_lists() function in 
scMappR, including all genes and scTransform as options 
[5, 38–40]. Briefly, process_dgTmatrix_lists() is a wrap-
per for Seurat V4 and scTransform [5, 38–40] before 
cell-type labeling with cell-type enrichment of the Cell-
Marker and Panglao databases [41, 42]. In our prepro-
cessing of these data, we used the Integration Anchors 
with Canonical Correlation Analysis, a rigorous recom-
mended batch correction method [43]. because the PD14 
mice were from the CD1 strain and the PD45 mice (male 
and female samples) were from the C57BL/6J mice (male 
only samples) [3]. While we may have lost some develop-
mental signal through this rigorous batch correction [44], 
the major cell-type markers and developmental trajecto-
ries we observed would be more reliable and translatable 
to our bulk RNA-seq.

Cells were first labeled with the cell types provided 
by the original authors [3]. we further applied the clus-
ter labels and cell-type markers generated from pro-
cess_dgTmatrix_lists() [5]. to provide further specificity 
to these cell-types. For example, “oligodendrocytes” 
contained clusters “4”, “24”, “17” and “24” which could be 
annotated to “oligodendrocyte precursors”, “developing 
oligodendrocytes”, and “mature oligodendrocytes” [45]. 
Cells with a different major cell-type label (i.e., neuron 
vs. glia) between the original author and this analysis and 
cell-types whose markers were primarily mitochondrial 
genes were discarded for differential, proportion, and tra-
jectory analyses.

Age-biased cell type-specific gene expression and cell-type 
proportion in scRNA-seq data
Age-biased cell-type proportion changes were measured 
with Fisher’s exact-test [46]. Age-biased genes within 
each cell type were measured using the Model-Based 
Analysis of Single-cell Transcriptomics (MAST)  using 
the FindMarkers() function in Seurat [38, 47]. We filtered 
genes with an FDR-adjusted p-value < 0.05 and required 
the gene to be expressed in > 25% of the cells in either age 
group.

Cell-type deconvolution
All defined cell types and all samples were used in cell-
type deconvolution analysis. We completed RNA-seq 
deconvolution with DeconRNA-seq [48], Digital Cell 
Quantification (DCQ) [49], Whole Gene Correlation 
Network Analysis (WGCNA) [36], Cibersort and Ciber-
sortX [50, 51], Cell population mapping (CPM) [52], 
MuSiC R package [7], and BayesPrism [6]. For all meth-
ods, the bulk RNA-seq dataset were the same RUV-seq 
normalized counts [17] and the scRNA-seq data were 
the SCTransform-normalized counts [40]. Cell-type pro-
portions from the MuSiC and MuSiC-NNLS methods 
were computed simultaneously with the music_prop() 
function, using default parameters [7]. We then corre-
lated the predicted cell-type proportion at PND12 with 
the cell-type proportions of scRNA-seq data at PND14 
and the predicted cell-type proportion at PND37 to the 
cell-type proportions of scRNA-seq data at PND45. We 
used MuSiC-NNLS, the tool with the highest correlation 
to the scRNA-seq data, for downstream analysis. For all 
downstream analyses, we estimated cell-type proportions 
with scRNA-seq PD14 and PD45 timepoints combined. 
We used DeconRNA-seq to calculate cwFold-changes 
in scMappR because it had the strongest correlation 
between predicted cell-type proportions and scRNA-
seq cell-type proportions of the three allowed RNA-seq 
deconvolution methods for the scMappR tool, namely 
DeconRNA-seq, WGCNA, and DCQ [5]. We then used 
the cell-type proportions estimated by MuSiC-NNLS 
to assign genes to cell types because the cell-type pro-
portion filter of gene–cell-type assignment can use any 
deconvolution method [5]. The association between cell-
type proportion, sex, and age was measured with two-
way ANOVA.

Cell-type specificity of bulk differentially expressed genes
We used scMappR [5] to generate a signature matrix 
from the scRNA-seq data in Kim et al., 2020 [3] by using 
the generes_to_heatmap() function in conjunction with 
our previously labeled cell types. We then calculated cell-
weighted Fold-Changes (cwFCs) for genes associated 
with varimax-rotated PC 16 with the scMappR_and_
pathway_analysis() function before sorting each DEG 
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into the cell type driving it with the cwFoldChange_eval-
uate() function [5].

We next used scMappR [5] to assign genes to their cell 
type of origin based on the differential expression of the 
genes between the conditions of interest in a specific cell-
type. To calculate the cell-weighted fold-change statistic, 
we inputted the bulk fold-change from PD12 and PD32, 
as these timepoints have the largest distance in the vari-
max-rotated PC 16.

Cell-type enrichment of neuronal subtypes
We integrated BayesPrism [6], a statistical technique to 
reweigh the gene expression signature to account for 
cell-type specific gene expression and cell-type abun-
dance of each major cell-type of interest (e.g. neurons) 
with scMappR [5], a statistical approach to assign DEGs 
to their cell-type of origin, to identify neuron-specific 
genes with an age-by-sex pattern in gene expression 
before assigning them to their neuronal subtype of origin. 
First, we generated a matrix of estimated neuron-specific 
gene expression in our bulk RNA-seq data using Bayes-
Prism. Briefly, we used our RUVseq-normalized RNA-seq 
data [17], the raw counts from our processed Seurat [38] 
object, and our labelled cell-types (neuron and neuroen-
docrine merged) to run BayesPrism [6]. For data process-
ing, we followed the author’s tutorial (https://bayesprism.
org/pages/tutorial_deconvolution) using parameters 
specified in the tutorial while selecting the “mouse” as 
our species of interest. Because we were not comparing 
tumour to non-tumour fractions, we changed the “key” 
variable from “tumor” to NULL. We then extracted the 
neuron-specific gene expression matrix from the output 
of the get.exp() function before treating it as a typical 
normalized gene expression matrix. As such, we repeated 
the varimax rotation analysis and identification of age-
by-sex association vrPCs and genes through vrPC score 
and vrPC loading analysis using the same parameters 
and cutoffs as used in our bulk tissue. We performed 
this analysis twice: once with all timepoints and once 
with only the peri-pubertal timepoints (PD22, PD27, and 
PD32).

With neuron-specific age-by-sex associated genes 
identified, we used scMappR [5] to sort these genes 
into neuronal subtypes. Firstly, we clustered hypotha-
lamic neurons and neuroendocrine cells in the mouse 
hypothalamus using the FindNeighbors() (dims = 1:10) 
and FindClusters() (resolution = 0.5) functions in Seurat 
[38], where we identified 11 neuronal or neuroendo-
crine clusters. We then calculated cell-type markers for 
each neuronal or neuroendocrine cluster against all 
other hypothalamus cell-types (i.e., other neurons and 
non-neuronal cells) using a Wilcoxon’s Test within the 
FindMarkers() function in Seurat [38]. We then labelled 
each cluster by cross-referencing their top markers to 

the CellMarker database and the “Protein expression and 
localization” and “Tissue RNA expression” subsections 
of the Human Protein Atlas [41, 42, 53]. After cell-types 
were labelled, we recomputed cell-type markers between 
neurons alone (i.e., excluding non-neuronal cells from 
the analysis) to identify the differences between neu-
ronal subclusters. The differences in neuronal marker 
expression were converted into a signature matrix 
using the seurat_to_generes() and generes_to_heat-
map() functions in scMappR [5]. We then computed the 
fold-changes between genes between PD12 vs. PD32 in 
males [24]. Lastly, neuronal age-by-sex associated genes 
were assigned their neuronal cluster of origin using the 
scMappR_and_pathway_analysis() and cwFoldChange_
evaluate() functions in scMappR [5] with the same 
parameters as in the bulk RNA-seq count matrix.

Cell-type trajectories of scRNA-seq data
Cell-type trajectories were measured in oligodendro-
cytes (oligodendrocyte precursors [OPCs], developing 
oligodendrocytes [DOs], and mature oligodendrocytes 
[MOs]) using the slingshot R package [53] with default 
parameters other than setting the “extension” param-
eter to “n”. The starting cell type in each trajectory was 
set as the most “PD14-biased” cluster, namely the “Oli-
godendrocyte precursor”. We analyzed which genes had 
expression patterns associated with pseudotime trajecto-
ries using the tradeSeq [54] R package. We used the mini-
mum number of allowable knots from the “evaluateK” 
function to fit the negative-binomial generalized additive 
model with the fitGAM() function [54]. Then, we tested 
the association between genes and trajectories with the 
associationTest() function [54], and corrected p-values 
with the “fdr” correction. Genes with an FDR-adjusted 
p-value < 0.05 and a fold-change > 1.5 remained for down-
stream analysis. We used the predictSmooth() [54] func-
tion paired with the scale function to generate columns 
for heatmaps. We identified genes based on their overlap 
with mouse TFs from ENCODE [55], puberty GWAS 
[56, 57] genes, and genes associated with varimax-
rotated PC 16. We plotted the expression of these genes 
along pseudotime with the Pheatmap R package [58].

Spatial mapping of oligodendrocytes in the adult rodent 
hypothalamus
We investigated the spatial distribution of oligodendro-
cytes in the adult hypothalamus using the Allen Brain 
Cell Atlas (ABCA), which contains 3.5  million spatially 
resolved cells in the adult C57BL6/J brain [59]. We 
counted the number of cells labelled as “mature oligo-
dendrocytes” in each subregion of the hypothalamus 
designated in the MERFISH-C57BL6J-638,850 dataset 
of the ABCA (knowledge.brain-map.org) as well as the 
number of total cells in each of these regions [59]. We 

https://bayesprism.org/pages/tutorial_deconvolution
https://bayesprism.org/pages/tutorial_deconvolution
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then investigated the enrichment of mature oligoden-
drocytes (MOs) in each subregion of the hypothalamus 
by comparing the proportion of MOs in the subregion 
of question to the proportion of MOs in the rest of the 
hypothalamus with a Fisher’s exact test. We then applied 
an FDR correction to the p-values of the Fisher’s exact 
tests for each subregion in the hypothalamus. We com-
puted a fold-change from the odds ratios of Fisher’s exact 
test (enrichment cut-off: fold-change > 2, FDR-adjusted 
p-value < 0.05).

Spatial gene expression of the adult female rat 
hypothalamus
To investigate spatially resolved oligodendrocyte propor-
tions in the postnatal female rat preoptic area, we used 
data from Zhou et al., 2022, which contains 10X-Visium 
spatial transcriptomics data [60] for the female rat pre-
optic area at a prepubertal (PD25), peripubertal (PD35), 
and post-pubertal (PD45) timepoints [4]. Specifically, we 
acquired aligned feature barcode matrices “filtered_fea-
ture_bc_matrix.h5” and annotation of cluster markers of 
the 10X-Visium data from the original authors of Zhou et 
al., 2022. We re-processed each sample individually using 
Seurat’s spatial vignette (https://satijalab.org/seurat/
articles/spatial_vignette) with the parameters described 
in the vignette [61]. Once re-processed, we merged the 
three samples using Seurat’s merge and combined vari-
able features from each sample into a new feature set, 
and then recomputed principal components with the 
combined feature set, neighbours, spatial clusters, and 
the UMAP using Seurat with the top 30 principal compo-
nents [61]. Then, we matched our clusters to the clusters 
of the original study using a combination of overlapping 
markers and relative positions on each spatial plot [3]. 
We then used Seurat’s “Integration with single-cell data” 
pipeline from the same vignette to assign a probabilistic 
score of each major cell type in the hypothalamus to each 
spot in these, using the PD45 scRNA-seq data as the ref-
erence dataset for integration [3, 62]. We then used Seur-
at’s AverageExpression() function to compute the average 
predicted score across all spots in each region and sam-
ple [3, 62]. We normalized them by the maximum score 
across samples. This analysis yielded a cell-type-by-spa-
tial region matrix of each sample populated by the nor-
malized cell-probability score. We then compared the 
average cell-probability scores between timepoints to 
identify regions of the preoptic area with a higher ratio of 
oligodendrocytes in the PD45 rat.

Results
Global transcriptomic view of the postnatal mouse 
hypothalamus across the pubertal transition in males and 
females
To track the transcriptomic dynamics of the postnatal 
mouse hypothalamus, we measured genome-wide gene 
expression using 3’UTR profiling in male and female 
C57BL/6J mouse hypothalamus samples collected at five 
postnatal days (PDs) corresponding to early develop-
ment (PD12), prepubertal (PD22), peri-pubertal (PD27 
in males, and PD32 in females), and postpubertal (PD37) 
stages (N = 4–5 per sex/age) (Fig. 1A). We used an auto-
mated RNA-seq library preparation platform to generate 
3’UTR libraries and sequence of all samples in a single 
batch.

To assess the quality of the 3’UTR-seq data we com-
pared our data to microfluidic qPCR data previously 
performed for 183 genes using the same RNA [8]. Sam-
ples were highly correlated between the RNA-seq and 
qPCR data based on these 183 overlapping genes (R2 
mean = 0.698, sd = 0.0270) (Supplementary Figure S1A). 
For example, four genes whose gene expression and 
expression patterns are well characterized in the hypo-
thalamus (Mkrn3, Cartpt, Dlk1, and Pomc) recapitu-
lated previously reported expression dynamics in the 
hypothalamus [60–64] (Fig. 1B, C). As previously shown 
with qPCR of selected puberty-related genes, PCA of 
the RNA-seq data revealed the greatest overall change in 
gene expression between PD12 and all other timepoints 
in both male and female hypothalamus samples (Fig. 1C). 
Furthermore, each sample in our 3’UTR-seq data is 
highly correlated to one another, with their R2 ranging 
from 0.89 to 0.99 between samples (0.98–0.99 between 
replicates) supporting that this dataset was of sufficient 
quality for downstream analyses (Supplementary Figure 
S1B).

Pairwise differential gene expression across pubertal 
development reflects hypothalamic cellular composition 
dynamics and puberty-relevant transcriptional control
To investigate the transcriptomic dynamics in the hypo-
thalamus throughout pubertal development, we identi-
fied DEGs between the studied age groups in male and 
female mice separately, as well as DEGs between sexes at 
each timepoint (FDR adjusted p-value < 0.05 and abso-
lute fold-change > 1.5). We denoted age-biased DEGs 
with a positive fold-change to have higher expression in 
the later timepoint in development (i.e., PD12 vs. PD22, 
PD22 is greater). When comparing sexes, we designated 
DEGs with a positive fold-change to have higher expres-
sion in females than males.

We found that most DEGs are established between 
PD12 and PD22,  before the physical signs of puber-
tal onset (vaginal opening in females and preputial 

https://satijalab.org/seurat/articles/spatial_vignette
https://satijalab.org/seurat/articles/spatial_vignette
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Fig. 1 Overview of the hypothalamic mouse transcriptome at five timepoints across pubertal development in males and females. A) Schematic of 
samples taken across pubertal development. Whole mice hypothalami were dissected at postnatal days (PD) 12, 22, 27, 32, and 37 in both male and 
female C57BL/6J mice. Arrows dictate the average age of puberty in males and females, respectively. Extracted hypothalamus samples underwent 3’UTR 
RNA-seq. B) Genome browser of the Hcrt (top) and Pmch (bottom) 3’UTR at PD12 and PD22 in males and females. C) Distribution of normalized counts 
of Pmch, Hcrt, Dlk1, and Mkr3 at every age and timepoint. The X-axis is age, and the Y-axis is log2-transformed RUVseq and ERCC-spike in normalized 
counts. Red lines and circles represent female samples, while blue lines and triangles represent male samples. D) Principal component analysis (PCA) of 
normalized gene expression across all samples and ages. The first two PCs are plotted with sexes designated with colour and ages designated by shape
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Fig. 2 (See legend on next page.)
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separation in males). Approximately 32% (511/1560) 
of DEGs were shared by males and females (Fig.  2A). 
We looked for pathways enriched by these DEGs using 
ActivePathways [28]. Upregulated DEGs (higher expres-
sion in PD22 than PD12) enriched for pathways related 
to glial-cell development (Fig. 2B). Downregulated genes 
(higher expression in PD12 than PD2) enriched in path-
ways involved in cell differentiation, cell morphogenesis, 
and proliferation (Fig.  2B). These PD12-biased enrich-
ments likely reflect that the brain (including the hypo-
thalamus) rapidly increases in volume from birth until 
PD20. Accordingly, genes involved in growth would be 
more highly expressed at PD12.

We next overlapped our DEGs at all timepoints to a 
pre-curated list of rare-disease genes whose mutations 
lead to hypogonadotropic hypogonadism (HH) [60]. We 
found three overlapping genes, all of which were differ-
entially expressed between PD12-PD22 and not at other 
timepoints. Specifically, Il17rd is downregulated in males 
and females (PD12 vs. PD22), Sema3e is downregulated 
in females, but not males, and Rab3gap1 is upregulated 
in males and females (PD12 vs. PD22) (Supplementary 
Figure S2). Briefly, Il17rd is a member of the interleu-
kin-17 receptor protein family and is involved in regulat-
ing growth through fibroblast growth factor and MAPK/
ERK signaling [61]. Sema3e is a semaphorin, which acts 
as axon guidance ligands and organogenesis [62]. Rab-
3gap1 is a member of the Rab3 protein family, which is 
involved in endoplasmic reticulum structure and has also 
been implicated in the proper development and migra-
tion of neurons [63].

We detected 317 DEGs comparing adjacent postpuber-
tal female timepoints, and unlike the earlier timepoints, 
these DEGs were observed only in females (PD32 vs. 
PD37) (Fig.  2A). These DEGs included several down-
regulated puberty-relevant neuropeptides, including 
Tacr1 [64] and Sst [65]. Upregulated DEGs included 
genes encoding transcriptional regulators involved in the 
hypothalamus-pituitary-gonadal axis (e.g., Gnrh, Lhb, Ar, 
and Pgr) such as Cited2 [66], Fgfr2 [61, 67], Lcor [68], and 
Sp1 [69] (Supplementary Figure S3A, B). Interestingly, 23 
of these upregulated DEGs are also downregulated (i.e., 

PD12 > PD22) before puberty in females (PD32 vs. PD37; 
23 genes, FDR-adjusted p-value = 5.06 × 10− 12), represent-
ing a set of genes whose expression may be suppressed 
during puberty in female mice. This pattern is not found 
in male mice.

Pathway analysis of these overlapping genes enriched 
for “transcriptional co-repression activity” (Skil, Wwtr1, 
Cited2) (3 genes, FDR-adjusted p-value = 0.044) and 
pathways involved in cell and tissue development (Sup-
plementary Figure S3C, Supplementary Figure S4). 
In contrast, we found eight upregulated DEGs before 
puberty (PD12 vs. PD22) enriched for the “response to 
peptide hormone” gene ontology (8 genes, FDR-adjusted 
p-value < 0.01). These genes include Agrp, which regu-
lates pubertal activation (Supplementary Figure S3) [70]. 
Together, we identified a set of transcriptional repressors 
being suppressed during puberty, paired with hormonal 
genes being activated during puberty in female mice, 
reflecting previous literature [71, 72].

We only identified 2 and 12 DEGs between PD22 and 
PD27 and 12 and 32 genes between PD27 and PD32 in 
males and females, respectively. While few DEGs were 
identified, it is notable that 5 of the 6 DEGs found in 
males between PD27 and PD32 were puberty-relevant 
neuropeptides, including downregulated cholecystoki-
nin (Cck) [73] and upregulated CART peptidase (Cartpt) 
[74, 75], pro-melanin concentrating hormone (Pmch) 
[76], orexin (Hcrt) [77, 78], and proopiomelanocortin 
(Pomc) genes [79] were upregulated (Figs.  1C and 2C 
and D). Hcrt [77, 78], oxytocin (Oxt) [80, 81], and Axl 
[82] are all differentially expressed in female mice and 
peak in expression at PD27 where we observe vaginal 
opening (PD22 < PD27 or PD27 > PD32; Fig. 2). Together, 
while the number of DEGs detected during puberty was 
lower than those detected before or after puberty, many 
of the peri-pubertal genes have previously been linked to 
pubertal regulation.

While we found developmental gene expression tra-
jectories specific to female mice (Fig. 2A, Supplementary 
Figures S3, S4), we did not find many DEGs when per-
forming pairwise differential expression between sexes at 
each timepoint. Across all timepoints, we found 41 male 

(See figure on previous page.)
Fig. 2 Differentially expressed genes (DEGs) across postnatal development in the mouse hypothalamus. A) Volcano plot of differentially expressed genes 
in each pairwise timepoint. The X-axis is the log2(fold-change) of the DEG, and the Y-axis is the -log10 (FDR-adjusted P-value) of the DEG as identified by 
DESeq2. Genes in grey are not detected as DE (FDR-adjusted P-value < 0.05, absolute fold-change > 1.5). Genes in blue are DE in males, genes in red are 
DE in females, and genes in purple are DE at the same timepoint in both males and females. B) Barplot of enriched pathways derived from DEGs between 
PD12 and PD22 in male and female mice. Genes are separated by upregulated and downregulated DEGs. Barplots show the -log10(FDR-adjusted P-value) 
of enrichment. Green bars represent pathways detected in both sexes, orange bars represent pathways detected by integrating sexes, blue bars represent 
male-driven pathways, and pink bars represent female-driven pathways. C) Expression profile of the four remaining DEGs. D) Barplot summarizing the 
number and major theme of pairwise DEGs across each timepoint. The X-axis is each timepoint, and the Y-axis is the number of DEGs. Positive genes 
were older-biased, and negative genes were younger-biased. D) Expression profile of DEGs involved in hypogonadotropic hypogonadism. The X-axis is 
age, and the Y-axis is log2-transformed RUVseq and ERCC-spike in normalized counts. Red lines and circles represent female samples, while blue lines and 
triangles represent male samples. Expression profile of differentially expressed GWAS genes (right). Row-normalized heatmap of GWAS-associated genes 
that were also detected as differentially expressed in our RNA-seq data Rows are genes, and columns are samples
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Fig. 3 (See legend on next page.)
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biased and 22 female biased genes, with almost half of 
these sex-biased mapping to a sex chromosome (chrX = 5, 
chrY = 21) (Supplementary Figure S5A, B). While there 
are fewer sex differences than DEGs across timepoints, 
four puberty-relevant genes are sex-biased. Specifically, 
Tcf7l2 [83, 84] is female-biased at PD27, and Etnppl, 
Cryab [85], and Hcrt [77, 78] are male-biased at PD32 
(Supplementary Figure S5C). Taken together, our pair-
wise differential analysis of age and sex individually iden-
tified expected gene developmental and hormonal gene 
expression patterns. However, analyzing each sex indi-
vidually was insufficient to capture a dynamic signature 
of pubertal regulation when analyzing gene expression in 
the bulk hypothalamus.

Genes expressing metabolic and reproductive 
neuropeptides display an age-by-sex interaction in gene 
expression along the pubertal transition
Traditional differential expression analysis across time-
points and within each sex was able to capture many 
of the broad developmental processes occurring dur-
ing postnatal development. However, it was unable to 
capture gene expression signatures involved in pubertal 
regulation. We aimed to combine all our gene expression 
data into a model that allowed us to investigate groups 
of genes whose developmental trajectories were offset 
or divergent between sexes. To do this, we leveraged the 
varimax rotated principal component analysis (vrPCA) 
[86] (Fig.  3A, See Materials and Methods for details), 
which is a technique used to improve the interpretation 
of principal components (Fig. 1D).

In total, we identified 129 age-by-sex associated genes, 
66 of which were differentially expressed between PD12 
and PD22 in males or females (Fig. 3). Interestingly, the 
four genes with the strongest association with an age-
by-sex interaction based on their vrPC loading are all 
hormone-producing genes that have been linked to 
pubertal regulation or dynamics: Pmch, Hcrt, Oxt, and 
Trf [76, 77, 81, 87] (Fig.  3D). While these genes with 
top loadings shared similar expression patterns (i.e., an 
increase in gene expression from PD12-PD27 in both 
sexes before diverging by sex), 21 genes decrease in 
gene expression before diverging by sex (Fig.  3D). This 

includes an established puberty-regulator Cbx6 [71], 
a member of the Polycomb repressive complex. We 
observed that three PD12 samples had different vrPC 
scores and expression patterns of genes with the top 
loadings, but removing these samples and repeating the 
analysis identified the same vrPC, showing that they 
are not driving the observed age-by-sex expression pat-
tern (Supplementary Figure S6). Pathway enrichment of 
age-by-sex associated genes were enriched for hormone 
activity (precision = 0.100, FDR = 1.60 × 10− 4), negative 
regulation and transmission of nerve impulse (preci-
sion = 0.167, FDR = 0.0248), and neuron and oligodendro-
cyte development pathways, including “neuron part” 
(precision = 0.339, FDR = 2.99 × 10− 9) and “myelin sheath” 
(precision = 0.132, FDR = 8.82 × 10− 8) (Fig. 3E).

We paired our pathway enrichments of these age-by-
sex associated genes with enrichments against a set of 
human RNA-seq DE experiments stored within the dif-
ferential expression enrichment tool (DEET) and data-
base. Here, the age-by-sex associated genes enriched for 
human DEG comparisons influencing glial cell growth in 
the TCGA database and neuronal-related pathologies in 
the GTEx database (Supplementary Figure S7A). Inter-
estingly, these age-by-sex associated genes also enriched 
for many relevant comparisons in the hypothalamus, 
including age and body mass index (BMI) from the GTEx 
database (Supplementary Figure S7B). The genes driv-
ing the enrichment of these hypothalamus comparisons 
included puberty-relevant hormonal neuropeptides with 
a high vrPC16 loading, namely OXT, AVP, HCRT, and 
PMCH (Supplementary Figure S7C, D).

Recently, spatially resolved single-cell transcriptomics 
have been performed along the pubertal transition of 
the female rat arcuate nucleus [4]. They identified three 
gene-expression modules associated with the pubertal 
transition. Broadly, they categorized genes associated 
with these modules as: module (1) glial cell enhancement 
and neuron proliferation in response to estradiol, mod-
ule (2) hormone secretion, and module (3) neuronal dif-
ferentiation and signal transmission [4]. The age-by-sex 
associated genes we identified were over-represented 
in all three modules (module 1: p-value = 2.23 × 10− 13, 
odds-ratio = 6.80, genes = 29; module 2: p-value = 0.0506, 

(See figure on previous page.)
Fig. 3 Evaluation of varimax-rotated principal component analysis revealed genes involved in sex-by-age interactions. A) Schematic of how varimax 
rotated PCA is applied to our data. B) Distribution of scores for enriched vrPCs. Male samples are triangles and blue lines, and female samples are circles 
and red lines. vrPC16 is highlighted because the genes associated with this vrPC are focused on for the rest of this study. C) Barplot showing the associa-
tion between each significant varimax rotated PC (vrPC), age, and sex. The X-axis shows vrPCs whose scores are associated with age, sex, or an age-by-sex 
interaction (7/48 total vrPCs). Red bars show the significance of sex, blue bars show the significance of age, and purple bars show the significance of an 
age-by-sex interaction. D) Heatmap of the gene expression patterns of genes associated with vrPC16. Each row is a gene, and each column is a sample. 
The heatmap is populated by the log2-RUV-seq normalized gene expression of each gene. Rows are annotated by whether the gene displays pairwise 
expression in at least one pairwise timepoint. Columns are annotated by age and sex. E) Barplot of enriched pathways derived from genes strongly as-
sociated with rotated PC 16. Barplots show the -log10(FDR-adjusted P-value) of enrichment. Green bars represent pathways deriving from gene-ontology 
biology pathways, red bars represent pathways deriving from gene-ontology cellular components, and blue bars represent pathways deriving from 
gene-ontology molecular functions
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odds-ratio = 1.97, genes = 11; module 3: p = 4.11 × 10− 11, 
odds-ratio = 4.22, genes = 38). Together, genes associated 
with an age-by-sex interaction across puberty are over-
represented in pathways and cell-type trajectories driving 
hypothalamic hormonal activity, neuronal development, 
and oligodendrocyte development, reflecting a gene 
expression signature linked to pubertal regulation.

Cellular composition of the postnatal hypothalamus
The hypothalamus exhibits considerable cellular het-
erogeneity reflecting its multimodal functions [2, 20]. 
To characterize the cell type-specific underpinnings of 
pubertal development in the hypothalamus, we inte-
grated scRNA-seq in the hypothalamus with our tem-
poral bulk RNA-seq. We leveraged data from Kim et al., 
2020, which contained scRNA-seq from the mouse hypo-
thalamus before and after puberty (PD14 and PD45) [3]. 
We incorporated the cell-type labels provided by Kim et 
al., 2020 (hypothalamic neurons, oligodendrocytes, tany-
cytes, ependymal cells, astrocytes, microglia, and endo-
thelial cells) [3] with cell-type identification analysis of 
clusters measured with Seurat [38] (see Materials and 
Methods for Details). Our cluster analysis further sub-
divided oligodendrocytes into oligodendrocyte precur-
sor cells (OPCs), developing oligodendrocytes DOs, and 
mature oligodendrocytes (MOs). It also subdivided neu-
rons into neurons and neuroendocrine cells (Fig. 4).

We first investigated hypothalamic cell-type pro-
portion dynamics across pubertal timepoints. When 
investigating the scRNA-seq data alone, we found 
that oligodendrocytes were the most dynamic cell 
types across puberty (Fig.  4B), with MOs increasing 
in proportion over time (PD14 < PD45) (Bonferroni-
adjusted p-value = 1.90 × 10− 106, fold-change = 8.43), 
and OPCs (Bonferroni-adjusted p-value = 3.94 × 10− 99, 
fold-change = -3.07) and DOs (Bonferroni adjusted 
p-value = 8.18 × 10− 56, fold-change = -4.65) decreasing 
in proportion over time (PD14 > PD45). There was also 
a lesser but significant increase in endothelial (Bonfer-
roni-adjusted p-value = 1.09 × 10− 54, fold-change = 1.856) 
and neuroendocrine cell (Bonferroni adjusted 
p-value = 4.81 × 10− 7, fold-change = 1.52) proportions over 
time.

Next, we used estimated hypothalamic cell-type pro-
portions in our bulk RNA-seq data and RNA-seq decon-
volution, mapping cell-type proportion changes across 
our developmental trajectory. Benchmarking RNA-
seq deconvolution in the hypothalamus is important 
because it has both highly similar cell types (e.g., neu-
ron vs. neuroendocrine) and highly distinct cell types 
(neuron vs. endothelial cell) amongst its many total cell 
types. To find the most reliable RNA-seq deconvolu-
tion tool in our system, we compared the cell-type pro-
portions of nine different RNA-seq deconvolution tools 

to the scRNA-seq data (See Materials and Methods for 
Details). We found that the MuSiC-NNLS tool [7] was 
the most accurate method, a method that has previously 
performed well on brain tissue [88] (Supplementary 
Table S2). As in the scRNA-seq data, we found that MOs 
increase in cell-type proportion until puberty, and OPCs 
(p-value = 3.68 × 10− 11) and DOs decrease in cell-type 
proportion until puberty (Fig. 4C, Supplementary Figure 
S8). These results further support our results suggesting 
that hypothalamic oligodendrocytes expand from OPCs 
into MOs during puberty.

Spatial composition of oligodendrocytes in the postnatal 
hypothalamus
To gain insight into where the inferred expansion of oli-
godendrocytes is occurring in the hypothalamus, we 
interrogated the Allen Brain Cell Atlas [59] (see Materi-
als and Methods for details). The Allen Brain Cell Atlas 
(ABCA) includes over 3.5 million spatially resolved cells 
across the adult C57BL6/J mouse brain [59]. Of these 
cells, ~ 38,000 belong to the hypothalamus, with ~ 6000 
of the hypothalamus-assigned cells being oligodendro-
cytes (Supplementary Fig.  9A-B). We found the lateral 
hypothalamic area (LHA) and the zona incerta (ZI) to 
be the regions most over-represented in oligodendro-
cytes (Supplementary Fig.  9C, D,E, F). The LHA is pre-
dominantly characterized by the orexigenic neurons [89], 
defined in part by the expression of the orexin-encoding 
gene Hcrt, which we identified as one of the genes with 
an age-by-sex interaction based on its vrPC loading.

Next, we re-analyzed spatially resolved gene expres-
sion of the arcuate nucleus in pre-pubertal (PD25), peri-
pubertal (PD35), and post-pubertal (PD45) female rats 
published in Zhou et al., 2022 [4, 90] (see Materials and 
Methods for details). The PD25 timepoint the rat approx-
imates our PD21 pre-pubertal timepoint in the mouse 
[4]. Therefore these spatially-resolved oligodendrocyte 
proportion changes reflect the pubertal timepoints in 
our data, rather than the early PD12-PD22 timepoint. 
These data allow for the interrogation of oligodendrocyte 
expansion spanning the pubertal transition.

Like in the mouse, we found most oligodendrocytes 
in the lateral hypothalamic (LH) area of the arcuate 
nucleus. In addition, the pre and post-pubertal experi-
ments allowed us to detect a ~ 7-fold depletion in OPC-
containing spots from PD25 and PD35 and no difference 
between PD35 and PD45 in the rat LH, (Supplementary 
Fig.  10C), reflecting the decrease in OPCs found in our 
data (Fig. 4B, C). Each “spot” in the LH is saturated with 
MOs at each timepoint (i.e., MO confidence is > 95% at 
each timepoint), preventing us from asking whether MO 
proportions are increasing during puberty in the LH. 
Lastly, these data include a region of the thalamus (i.e., 
the paraterete nucleus), which displayed a consistent 
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Fig. 4 Cell-type specific gene expression across the developing hypothalamus. A) Lower-dimension representation of scRNA-seq data in the PD14 and 
PD45 mouse hypothalamus with the Uniform Manifold Approximation and Projection (UMAP). Cell labels were identified using a mixture of labels provid-
ed by Kim et al., 2020 and unsupervised clustering. B) Distribution of cell proportions estimated from RNA-seq deconvolution at each age and time-point. 
The X-axis is age, and the Y-axis is estimated cell-type proportions. Red lines and circles represent female samples, while blue lines and triangles represent 
male samples. Letters represent significance using a Tukey post hoc test after identifying differences in cell-type proportion with ANOVA. C) Barplot of 
cell-type proportion differences within each cluster (Fisher’s exact-test). Red bars designate a fold-change of two between ages. Each column is a cell-
type with the number of DEGs mapping to that cell-type in brackets. D) Heatmap of gene-normalized cell-weighted fold-changes (cwFold-changes) of 
the 129 age-by-sex associated genes and are DE in the complementary direction in the scRNA-seq data
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Fig. 5 (See legend on next page.)
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decrease in MOs between PD25, PD35 and PD45, which 
shows that our findings do not reflect a secular increase 
in MOs in the brain.

Age-by-sex associated transcriptional dynamics map 
to genes involved in neuropeptide activation and 
oligodendrocyte maturation
We next used these scRNA-seq data to assign age-by-
sex associated genes to their cell type of origin using 
scMappR [5], using both the PD14 and PD45 timepoints 
in the scRNA-seq data [3]. Overlapping the 129 cell 
type-specific age-by-sex associated genes with cell type-
specific DEGs from the scRNA-seq data [3, 47] (PD14 vs. 
PD45) yielded a set of high-confidence cell-type specific 
genes (n = 67), whose gene expression patterns are condi-
tional on both age and sex (Fig. 4D). Of the four highest 
confidence genes with the top age-by-sex loadings, three 
mapped to neurons and neuroendocrine cells, namely 
Pmch, Hcrt, and Oxt, while Trf mapped to oligodendro-
cytes. Previous work showed that Trf acts as a cofactor 
for iron in myelination [91]. Additionally, Dlk1 and Gria1 
mapped to neuroendocrine cells and neurons (Fig.  4D, 
Supplementary Figure S11) and are implicated in puber-
tal disease and ovulation rate respectively [92, 93].

Next, we investigated whether the neuron- and neu-
roendocrine-mapping age-by-sex associated genes over-
lapped with translated mRNA in lepRb + neurons in the 
hypothalamus [37] using TRAP-seq (i.e., RNA-seq of 
ribosome-bound mRNA), because leptin is an activa-
tor of pubertal initiation [70, 94]. We found 21 of our 
neuron- and -neuroendocrine-mapping genes were 
enriched in lepRb + neurons (p-value = 4.33 × 10− 9, odds 
ratio = 5.96) (Supplementary Figure S12). These genes 
included Cartpt, Dlk1, and Sod1, which have all been 
previously shown to influence pubertal timing or fertility 
[74, 95–97].

Next, we aimed to increase the specificity of our cell-
type specific gene expression analysis by identifying neu-
ronally-expressed genes with an age-by-sex interaction 
in gene expression before assigning them to their neu-
ronal subtype. Briefly, we used BayesPrism [6] to predict 
neuron-specific gene expression in our RNA-seq data. 
Then, we generated a signature matrix of neuronal sub-
types in the scRNA-seq data used in this study [3] before 
repeating the same varimax rotation analysis (see Materi-
als and Methods for details). We identified one neuronal 

vrPC with an age-by-sex interaction (neuron-vrPC 11) 
(Supplementary Figure S13A). Neuron-vrPC 11 shared 
the distribution of its PC score with the unadjusted age-
by-sex associated principal component (i.e., vrPC 16) and 
45/77 (58.4) of the genes associated with neuron-vrPC 11 
were found in the unadjusted age-by-sex associated gene 
set. We found several of the genes unique to the neu-
ron-vrPC 11 were previously reported to be involved in 
pubertal regulation or disorders that impact the normal 
development of secondary sex characteristics, such as Th 
(encoding thyroid hormone) [98], Nrxn1 [99], Cpe [100], 
and Xist [101] (Supplementary Figure S14C).

Next, we used scMappR [5] to assign these neuron-
vrPC 11 associated genes into their neuronal subtype of 
origin (See Materials and Methods for details). Most of 
these genes were assigned to Cck-Cartpt + GABAergic 
neurons, Oxt + Avp + Pdyn + neurons, or neuroendocrine 
cells (Supplementary Figure S14). Additionally, the poly-
comb repressive complex gene Cbx6 is only assigned to 
Cck-Cartpt + GABAergic neurons and is decreasing in 
expression (Supplementary Figure S15).

Lineage reconstruction of oligodendrocytes during 
postnatal mouse hypothalamus development
We observed an active transition of oligodendrocytes 
from OPCs into MOs in the postnatal hypothalamus 
(Figs. 2B and D and 4), and detected clear manifold from 
OPCs to DOs and MOs in the reprocessed scRNA-seq 
data (Fig. 4A). By using Slingshot, a bioinformatic pack-
age that identifies cellular lineages across cell types [53], 
we measured a pseudotime trajectory from OPCs to 
MOs (Fig.  5A). By using tradeSeq [54], we could map 
cell-type specific gene expression to the cellular trajec-
tory measured using Slingshot [53] (see Materials and 
Methods for details).

Overall, we found 1294 genes with a dynamic gene 
expression pattern along the OPC-to-MO cellu-
lar trajectory. We overlapped these genes with tran-
scription factors (Fig.  5B), genes implicated in age of 
menarche or voice breaking from genome-wide associa-
tion study [56, 98] (Fig.  5C), and with our oligodendro-
cyte-expressed age-by-sex associated genes (Fig.  5D). 
Transcription factors associated with oligodendrocyte 
development were most prominently expressed in devel-
oping oligodendrocytes (5B), where we found genes 
involved in thyroid hormone response (Nkx2-1 and Thra) 

(See figure on previous page.)
Fig. 5 Pseudotime of hypothalamic oligodendrocyte development. A) Lower-dimension representation of oligodendrocyte scRNA-seq data in the PD14 
and PD45 mouse hypothalamus with the Uniform Manifold Approximation and Projection (UMAP) overlaid with the pseudotime trajectory identified 
with Slingshot. Points are cells coloured by cell-type. and the line is the plotted pseudotime trajectory measured with Slingshot, starting with OPCs and 
plotted with the tradeSeq R package. B) Heatmap of transcription factors associated with pseudotime. C) Heatmap of puberty-associated GWAS genes 
associated with pseudotime. D) Heatmap of oligodendrocyte-mapped age-by-sex associated genes associated with pseudotime. For a gene to be in-
cluded, it must be associated with an age-by-sex interaction (i.e., varimax 16), mapping to oligodendrocyte precursor cells, developing oligodendrocytes, 
or mature oligodendrocytes with scMappR, and associate with pseudotime. For B-D, rows are genes associated with pseudotime. Columns are portions of 
the pseudotime trajectory blocked into 200 smoothers using tradeSeq. Heat is measured by scaling the predicted smoothers with the scale function in R
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and cell differentiation and development (Sox2, Tcf7l2, 
Egr1, Hes1) (Fig. 5B, C). Next, we found that these genes 
associated with oligodendrocyte development were 
over-represented for both puberty-related GWAS hits 
genes (FDR = 4.6 × 10− 3

, 27 genes) and oligodendrocyte-
expressed age-by-sex associated genes (FDR = 4.6 × 10− 3, 
58 genes).

Of the 58 genes displaying an age-by-sex interaction 
and gene expression and an association with oligoden-
drocyte development, we found an even distribution of 
genes mapping to OPCs, DOs, and MOs (Fig. 5D). These 
genes included core oligodendrocyte stage-specific regu-
lated proteins such as Mbp, Mobp, Mal, and Olig1 [45], 
puberty and HPA-linked Thra, genes encoding the mela-
tonin receptors Mt1 and Mt2, and Pmch (Fig. 5D). Three 
of these genes, namely Sox2, Chd7, and Stub1, can lead to 
HH in humans [60]. Chd7 works with Sox10 to promote 
myelination by co-occupying and promoting the expres-
sion of myelinogenic genes [99], and Stub1 has a less 
studied role in oligodendrocytes. Sox2 plays an important 
role in cellular differentiation, proper myelination, hypo-
thalamic-pituitary-gonadal axis development, and many 
other development processes [100, 101]. Lastly, two tran-
scriptional regulators whose mutations lead to both HH 
and hypomyelination are Polr3a and Polr3b [60, 102]. We 
found that other members of the polymerase 3 complex, 
namely Polr3e and Polr3h, have dynamic gene expression 
patterns along the cellular trajectory of OPCs to MOs 
(Supplementary Figure S15). Whether these findings link 
oligodendrocyte development in the hypothalamus to 
pubertal progression remains to be seen.

Discussion
The regulation of puberty (onset and progression) is a 
dynamic, non-linear process that is also sex-biased in its 
initiation, regulation, and manifestation. By integrating 
bulk RNA-seq spanning 5 timepoints in male and female 
mice with publicly available scRNA-seq data of pre- 
(PD14) and postpubertal (PD45) mice [3], we identified 
gene expression signatures and genes, some of which are 
known to be involved in pubertal regulation and other 
candidates whose role remains to be seen.

Differential gene expression in male and female mice 
during puberty (i.e., PD22-PD27, PD27-PD32) included 
genes coding for pubertal and metabolic hormones 
and neuropeptides, namely Oxt, Hcrt, Cartpt, Avp, Cck, 
Pmch, and Pomc [73, 74, 76, 77, 79, 81, 103, 104]. Han 
et al., 2020 also identified many of these same genes 
(including Oxt, Hcrt, Avp, Cartpt, Pomc, Pmch) as differ-
entially expressed in the arcuate nucleus and/or premam-
millary nucleus of the hypothalamus in a leptin-inducible 
transgenic model of pubertal activation in female mice 
[85]. While many of the individual peripubertal DEGs 
identified in this study have been previously implicated 

in pubertal regulation, the number of detected DEGs was 
low compared to over the ~ 1,000 DEGs observed prepu-
berty (PD12 vs. PD22), which in both male and female 
mice were enriched for pathways related to the cellular 
organization of the hypothalamus.

To better incorporate sex as a variable, we turned to 
an established varimax PCA approach [25] that allowed 
us to identify genes whose variation is related to both 
age and sex. This analysis revealed 129 genes with age 
by sex interactions, including the puberty relevant DEGs 
Oxt, Hcrt, Cartpt, Avp, and Pmch. Three potentially 
puberty-relevant, age-by-sex associated genes that could 
be assigned to neuronal cell types were Gria1, Dlk1, and 
Cartpt. Recent studies in female rats show that Gria1, 
along with a network of genes implicated in the epigen-
etic control of puberty, is under the shared regulation 
of Kdm6b at puberty in the hypothalamus [93]. Loss of 
function variations in Dlk1 are associated with CPP, 
and common variants near Dlk1 are associated with 
age of menarche [95, 103, 105]. Dlk1’s ability to regu-
late Notch signaling has been a proposed mechanism to 
control pubertal timing [105]. Cartpt plays a core role in 
the function of CART neurons, a neuronal subtype that 
receives signals from leptin and alters pubertal timing in 
female mice [74]. Cartpt was also found by Han et al. to 
be differentially expressed in the hypothalamus of leptin 
deficient mice given exogenous leptin to initiate puberty 
[85]. Lastly, our integrative analyses of bulk and single 
cell RNA-seq data that assigned age-by-sex associated 
genes to neuronal subtypes identified 21 genes mapping 
to CART neurons (Supplementary Figure S14). Cbx6, a 
component of the Polycomb repressive complex (PRC), 
mapped to these CART neurons and displayed an inverse 
gene expression pattern to Cartpt. Given the PRCs criti-
cal role in regulating kisspeptin neurons during pubertal 
activation [71, 72], the sex-dependent downregulation 
of Cbx6 and upregulation of Cartpt during puberty war-
rants further investigation.

Previous studies reported that oligodendrocyte matu-
ration and myelination can continue into adolescence 
[106–108]. However, the magnitude of oligodendro-
cyte expansion and its role in regulating hypothalamic 
hormones is not well understood [109]. When we inte-
grated our bulk RNA-seq data with publicly available 
scRNA-seq data [3] in the hypothalamus, we inferred 
a substantial expansion of OPCs into MOs before and 
during puberty (Fig.  4B, C). Furthermore, we observed 
that age-by-sex associated genes obtained by our vrPC 
analysis were over-represented in the set of dynamic 
genes across oligodendrocyte expansion (Fig.  5A, D). 
By analyzing the mouse Allen Brain Cell Atlas [59] and 
publicly available spatial transcriptomic data in the adult 
rat hypothalamus [90], we observed that the major site 
of hypothalamic maps to the lateral hypothalamus (LH) 
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(Supplementary Figure S9, S10). The lateral hypothalamic 
area plays an important role in feeding, arousal, pain, 
and body temperature [110]. The LH also contains a high 
density of orexinergic (Hcrt expressing), melanin concen-
trating-hormone secreting (Pmch expressing) and CART 
(Cartpt) expressing neurons. Each of these LH-enriched 
cell-types contains key marker genes displaying an age-
by-sex interaction, and all of these cell-types have been 
shown to regulate pubertal development [74, 76, 78]. 
The shared localization and expression pattern of these 
genes and our observed hypothalamic oligodendrocytes 
leads us to speculate that these oligodendrocytes are sup-
porting orexinergic, melanin concentrating-hormone 
secreting, and CART neurons during puberty in a sex-
specific manner. Whether the hypothalamic oligoden-
drocyte expansion and the factors that control it play a 
supporting role in establishing puberty remains to be 
seen. Recently, Steadman et al., 2020 developed an induc-
ible Mrf knockout that blocks OPC expansion into MOs 
[111]. Adapting this model to be hypothalamus-specific 
could, in principle, test if oligodendrocyte expansion 
influences pubertal initiation.

One important limitation of our study is that we inves-
tigated the entire hypothalamus rather than micro-dis-
secting the hypothalamus into subregions. The advantage 
of our study design, which opted for low cellular reso-
lution and high biological replicates (i.e., N = 48 in one 
experimental batch), is that it allowed us to study male 
and female mice while maximizing the number of time-
points and biological replicates and aligned with exist-
ing single cell transcriptomic datasets performed on the 
entire hypothalamus. However it is worth noting that 
although our study incorporated published, high qual-
ity, scRNA-seq from postnatal timepoints highly relevant 
to our study (PD14 and PD45; [3]), this study was not 
designed to study puberty. The scRNA-seq data we used 
was generated using two different strains and did not 
control for sex (PD14 mice were CD1 (male and female), 
and PD45 mice were C57BL/6J (male). Furthermore, 
while we could provide cellular resolution on our bulk 
gene expression data, could not capture the gene expres-
sion dynamics of rare cell-types within the hypothala-
mus. For example, many cell-types that play the most 
important role in regulating puberty (e.g., Gnrh neurons, 
KNDy neurons) are rare and require prior cell-sorting for 
surface markers to observe them in a typical scRNA-seq 
experiment [79].

Spatial resolution is important to understand hypotha-
lamic function [112, 113], however neither of the bulk 
RNA-seq or scRNA-seq data in this study is spatially 
resolved. We used publicly available spatial data to infer 
the spatial distributions of oligodendrocytes in our data, 
however, due to our data being bulk and not spatially 
resolved, we still cannot detect developmental spatial 

dynamics specific to subregions of the hypothalamus. 
Similar to how our integrative bulk/single cell RNA-seeq 
analysis would not provide enough resolution to study 
Gnrh and KNDy neurons, the recently reported increase 
in SEMA6A expressing oligodendrocytes that is relevant 
for regulating Gnrh neurons in the median eminence 
could not be detected in our analyses [114].

Another limitation of our study is that the biologi-
cal inferences that we make about the gene expression 
dynamics are based on discoveries made by previous 
work, rather than our own functional assays. As such, our 
findings are correlative rather than causal in nature. This 
is inherent to studies that exclusively rely on gene expres-
sion. Nonetheless gene expression profiling by RNA-seq 
has been a consistently reliable method to aid in hypoth-
esis generation and downstream biological discovery. A 
recent tour-de-force study looking at gene regulatory 
networks underlying sexually dimorphic neural circuits 
utilized microdissection of specific brain regions in con-
junction with sensitive genomics approaches to map the 
genome wide binding of the estrogen receptor to target 
genes [115]. Such empirical transcription factor-chroma-
tin assays (and other cell-type specific mouse transgenic 
tools such as translating ribosome affinity purification 
followed by RNA-seq), will be essential for building gene 
regulatory networks related to pubertal timing.

Perspectives and significance
Despite intense study over several decades, the mecha-
nisms controlling the timing of puberty are still unclear. 
The hypothalamus central to our understanding of how 
pubertal timing is controlled. Finding the genes that 
control pubertal timing will provide direct insight into 
how the hypothalamus integrates environmental signals 
such as those derived from diet, psychosocial stress, and 
photoperiod [109]. Our study found that acquiring a 
puberty-driven gene expression signature was possible in 
the hypothalamus when profiling multiple timepoints in 
surrounding puberty in males and females. By taking care 
to make these results easily accessible, we intend for this 
work to be a useful resource for investigating post-natal 
development in the mouse hypothalamus. Our integra-
tive analyses allowed us to identify biologically interpre-
table gene expression patterns from a complex process 
and heterogeneous tissue. Subspace simplification tech-
niques (i.e., a varimax rotation simplifying a principal 
component space) are less common in bulk RNA-seq 
analysis than differential gene expression and gene corre-
lation network analyses. We propose that these subspace 
simplification techniques are valuable when investigat-
ing complex biological processes (e.g., multiple sexes, a 
treatment, and/or timepoints) a multicellular RNA-seq 
samples (i.e., bulk RNA-seq) provided sufficient biologi-
cal samples.
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Conclusions
We found that cell type- and sex-aware transcriptomic 
dynamics in the pubertal hypothalamus are associated 
with well-established neuropeptide activation and regula-
tion, as well as potentially relevant genes including Hcrt, 
Oxt, Dlk1, Gria1, and Cartpt. We inferred that oligoden-
drocyte expansion occurs in the hypothalamus prior to 
and throughout pubertal initiation and that many genes 
associated with this oligodendrocyte expansion relate to 
pubertal timing and regulation. Our data and interactive 
Shiny App will allow researchers to visualize the tran-
scriptionally dynamic genes in the hypothalamus and 
pituitary gland, providing a baseline in postnatal gene 
expression for the broader scientific community.
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