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Attenuated sex-related DNA methylation 
differences in cancer highlight the magnitude 
bias mediating existing disparities
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Abstract 

Background DNA methylation (DNAm) influences both sex differences and cancer development, yet the mecha-
nisms connecting these factors remain unclear.

Methods Utilizing data from The Cancer Genome Atlas, we conducted a comprehensive analysis of sex-related 
DNAm effects in nine non-reproductive cancers, compared to paired normal adjacent tissues (NATs), and validated 
the results using independent datasets. First, we assessed the extent of sex differential DNAm between cancers 
and NATs to explore how sex-related DNAm differences change in cancerous tissues. Next, we employed a mul-
tivariate adaptive shrinkage approach to model the covariance of cancer-related DNAm effects between sexes, 
aiming to elucidate how sex impacts aberrant DNAm patterns in cancers. Finally, we investigated correlations 
between the methylome and transcriptome to identify key signals driving sex-biased DNAm regulation in cancers.

Results Our analysis revealed a significant attenuation of sex differences in DNAm within cancerous tissues com-
pared to baseline differences in normal tissues. We identified 3,452 CpGs (Pbonf < 0.05) associated with this reduction, 
with 72% of the linked genes involved in X chromosome inactivation. Through covariance analysis, we demonstrated 
that sex differences in cancer are predominantly driven by variations in the magnitude of shared DNAm signals, 
referred to as “amplification.” Based on these patterns, we classified cancers into female- and male-biased groups 
and identified key CpGs exhibiting sex-specific amplification. These CpGs were enriched in binding sites of critical 
transcription factors, including P53, SOX2, and CTCF. Integrative multi-omics analyses uncovered 48 CpG-gene-cancer 
trios for females and 380 for males, showing similar magnitude differences in DNAm and gene expression, pointing 
to a sex-specific regulatory role of DNAm in cancer risk. Notably, several genes regulated by these trios were previ-
ously identified as drug targets for cancers, highlighting their potential as sex-specific therapeutic targets.

Conclusions These findings advance our understanding of how sex, DNAm, and gene expression interact in cancer, 
offering insights into the development of sex-specific biomarkers and precision medicine.

Highlights 

• The impact of sex on DNAm in cancers is pervasive and largely cancer-specific.
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enhances our understanding of the role of DNAm in can-
cer and could contribute to more personalized therapies 
for both males and females.

Background
Sex disparities in non-reproductive cancers are well-rec-
ognized across various aspects, including incidence, sur-
vival, mortality, and treatment outcomes. For instance, 
a higher frequency of non-reproductive cancers occurs 
in males, leading to nearly twice the mortality rate com-
pared to females [1–3]. Furthermore, females exhibit bet-
ter overall survival outcomes from lung cancer surgery 
[4], while males benefit more from immunotherapies 
with immune checkpoint inhibitors in colorectal can-
cer [5]. Despite these notable sex differences in cancers, 
the underlying mechanisms of sex-specific effects on 
cancers remain largely uncharacterized. Understanding 
these molecular mechanisms could facilitate the develop-
ment of sex-specific prevention and treatment strategies, 
thereby improving clinical care.

Previous studies have highlighted sex differences in the 
genomics of cancer tissues [5–10]. For instance, Yuan 
et al. [9] classified 13 cancer types into strong and weak 
sex-effect groups based on sex-biased molecular patterns, 
finding that 53% of clinically actionable genes exhibited 
sex-biased signatures. Similarly, Li et al. [10] identified a 
greater number of somatic single nucleotide variants in 
male patients than in females using a pan-cancer strat-
egy. However, focusing solely on intra-tumoral compari-
sons may not fully capture the complexities of sex effects 

on cancers. Given the extensive reporting of sex-biased 
molecular signatures in human complex traits and tissues 
[11–14], it remains unclear whether such disparities are 
reorganized during cancer progression.

The impact of sex is shaped by a combination of 
individuals’ genomes, environmental effects, and their 
interplay. DNA methylation (DNAm), a stable epige-
netic marker, can adapt genome function to changing 
environmental contexts. Previous studies have reported 
extensive sex differences in DNAm [15, 16]. Moreover, 
aberrant DNAm in cancer is recognized as a powerful 
target for clinical diagnostic, prognostic, and predictive 
biomarkers [17–20]. Thus, DNAm may serve as a prom-
ising endophenotype, connecting individuals’ genomes 
with sex-biased phenotypes in cancers. However, few 
studies have systematically examined sex differences in 
DNAm related to cancers.

In this study, we hypothesized that sex differences 
in DNAm levels are reorganized in cancers, resulting 
in ubiquitous sex-biased regulation of DNAm across 
cancers. To test this hypothesis, we conducted a com-
prehensive investigation of DNAm and its sex-specific 
effects in cancers using data from The Cancer Genome 
Atlas (TCGA). Our analysis included 3,435 cancer sam-
ples  (Nfemale = 1,345;  Nmale = 2,090) and 482 paired nor-
mal adjacent samples (NATs)  (Nfemale = 193;  Nmale = 289) 
from seven tissues across nine non-reproductive cancer 
types. The NATs served as controls in this study. To 
characterize the sex-specific role of DNAm in cancers, 
we aimed to answer two key questions: (1) How do the 

• DNAm-related sex differences were extensively attenuated in cancers.
• Amplification: magnitude differences in numerous shared DNAm signals dominate the sex effects on cancers.
• Correlated DNAm and gene expression pairs implicate concordant amplification effects.

Keywords Sex differences, DNA methylation, Cancer, Gene expression, RNA-seq

Plain language summary 

Sex disparities in non-reproductive cancers are well-documented across various aspects, including incidence, survival, 
mortality, and treatment outcomes. A deeper understanding of these differences could support the development 
of personalized therapeutic strategies. In this study, we conducted a comprehensive analysis of sex-related DNA 
methylation (DNAm) effects in nine non-reproductive cancers, comparing cancer tissues with paired normal adja-
cent tissues (NATs). Our findings revealed that DNAm differences between males and females were significantly 
reduced in cancerous tissues. The CpGs associated with this reduction were linked to pathways involving the tumor 
microenvironment. Additionally, we found that these sex differences in cancer were primarily driven by variations 
in the effect sizes of shared DNAm signals, allowing us to classify cancers into male-biased (BLCA, THCA, KIRP, LUAD, 
and HNSC) and female-biased (LUSC, LIHC, COAD, and KIRC) groups. Notably, we found that differential expression 
in cancers was correlated with differential methylation in a sex-specific manner, through concordant magnitude dif-
ferences within each sex. Several of these genes, regulated by DNAm changes, were already targets of cancer drugs 
(e.g., ECSCR, GATA2, and ERBB3), highlighting the potential for developing sex-specific treatments. Overall, this research 
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DNAm-related sex differences observed in cancers dif-
fer from those in normal tissues? (2) How do sex effects 
influence the aberrant DNAm observed in cancers?

Methods
Data collection
We obtained DNAm data and corresponding samples 
characteristics from the TCGA data portal (https:// tcga- 
data. nci. nih. gov/ tcga/). We collected nine major TCGA 
non-reproductive cancer types with sufficient sample 
sizes, comprising at least 10 samples each sex per diag-
nosis (cancer or NAT). In this study, we focused on the 
biological sex differences as defined by the sex chromo-
somes, XX (female) or XY (male). These cancer types 
include head and neck squamous cell carcinoma (HNSC), 
thyroid carcinoma (THCA), lung adenocarcinoma 
(LUAD), lung squamous cell carcinoma (LUSC), liver 
hepatocellular carcinoma (LIHC), kidney renal clear cell 
carcinoma (KIRC), kidney renal papillary cell carcinoma 
(KIRP), bladder urothelial carcinoma (BLCA), and colon 
adenocarcinoma (COAD). The DNAm profiles were 
generated using the Infinium Human Methylation 450K 
BeadChip. Each dataset was preprocessed separately and 
analyzed according to the workflow outlined below.

Preprocessing for DNA methylation datasets
All analyses were performed in R (v.4.2.0). Raw IDAT for-
mats were processed using ChAMP software (v.2.21.1) 
[21]. The probes were removed based on the following 
criteria: (1) probes with detection p-value greater than 
0.01; (2) probes with less than three beads detected in 
at least 5% of samples per probe; (3) all non-CpG probes 
contained in our dataset; (4) single nucleotide polymor-
phism (SNP)-related probes [22]; (5) probes that map to 
multiple locations, according to Nordlund et al. [23]. The 
probes on the sex chromosomes were kept and further 
used to predict sex using the estimateSex [24] function 
from the wateRmelon R package [25]. Samples identified 
with sex chromosome aneuploidy or predicted sex differ-
ent from their reported sex were removed. The beta-mix-
ture quantile dilation (BMIQ) algorithm was applied to 
adjust the beta-values of type II probes into a statistical 
distribution characteristic of type I probes [26].

Batch effects introduced by different data sources were 
corrected using the champ.runCombat function. To cap-
ture potential underlying hidden confounding factors 
that may also influence DNAm, we performed smartSVA 
[27] on DNAm measurements. Putative surrogate vari-
ables (SVs) were estimated from DNAm values and para-
metrized to exclude DNAm variation linearly attributable 
to sex and diagnosis (cancer or NAT).

Attenuation of sex differences in DNAm
To compare the extent of sex differences in DNAm 
between cancers and NATs, paired cancer and NAT sub-
jects were extracted for use in this analysis. Separately in 
cancers and NATs, the number of sex-related differen-
tially methylated positions (sDMPs) was calculated using 
the linear model in the limma R packages [28]. CpGs with 
a Bonferroni-corrected P-value (Pbonf) less than 0.05 were 
considered significantly differentially methylated. The 
difference in the number of sDMPs for cancer vs. NAT 
subjects was calculated as the “true” difference.

To enhance the robustness of the results, a permuta-
tion-based approach (1000 times) was used to test the 
“true” difference. Each permutation randomly assigned 
“cancer” and “NAT” labels to subjects, keeping the num-
ber of subjects in each group consistent with the true 
number of cancer and NAT subjects. Permuted distri-
butions of the difference in sDMPs between cancer and 
NAT subjects were generated for each cancer type. The 
two-tailed P-value were computed by testing the “true” 
difference against the permuted distribution. Signifi-
cance threshold for altered sex-related DNAm among 
cancer and NAT samples was defined as a P < 0.05. If the 
permuted P-value was less than 0.05, with the number of 
sDMPs in cancers less than in NATs, it was considered 
significantly attenuated sex differences in cancers. Oth-
erwise, a more widespread pattern of sex differences was 
represented in cancers.

The attenuated methylated positions (AMPs) refer to 
the sDMPs that exhibit the attenuation of sex differences 
between cancer and NAT subjects. To identify high-
confidence AMPs, we extracted the sDMPs that were 
significantly methylated and had larger changes in NATs 
as compared to cancers. We calculated the occurrence 
of each “true” sDMPs identified in the control subjects 
within their respective permuted results. For each can-
cer type, those “true” sDMPs present in less than 95% of 
the 1000 permutations for NAT subjects were retained as 
AMPs. The AMPs were further subset into female-biased 
(higher methylation levels in females) and male-biased 
(higher methylation in males).

Sex‑stratified differential DNA methylation analyses
We performed differential methylation analysis using 
linear modeling approaches with the limma package in 
R [28] to examine the mean differences in DNAm lev-
els (reported as Δβ) between cancer samples and NATs 
in females and males, separately. To ensure the robust-
ness of our sex-stratified results, we also applied a con-
servative permutation test. We randomly shuttled 
“diagnosis” and “sex” labels within each cancer 1000 
times and repeated the sex-stratified differential meth-
ylation analysis with the same linear model described 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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above. Significance thresholds for sex-stratified differ-
entially methylated positions (DMPs) were defined as 
both reaching the Bonferroni adjusted P-value and the 
permutation-based P-value less than 0.05. We defined 
hypermethylated DMPs as those with higher DNAm lev-
els in cancers than in NATs, and hypomethylated ones as 
those with lower levels.

Sex‑by‑cancer interaction analyses
Analyses for sex-by-cancer interaction DMPs were fit 
using the same model above, while adding the interaction 
term “sex*cancer” to tested the interaction effect between 
sex and cancer.

Statistical analyses for the sample size bias issue
To address potential sample size bias between female and 
male subgroups that could impact the comparison of sig-
nificant DMP numbers, we employed two stringent and 
complementary analytical approaches: (1) down-sam-
pling analysis; (2) bootstrap-based approach.

For down-sampling analyses, the sex with larger sam-
ple sizes was randomly sampled to match the sex with 
smaller sample sizes within each type of cancer. This 
process was repeated 1000 times, and differential meth-
ylation analysis, as described in the previous section, was 
applied. Only THCA and LUAD had larger sample sizes 
in females, and down-sampling was applied to match the 
male sample sizes. For other cancers, male samples were 
randomly sampled using female sample sizes. The num-
ber of significant DMPs was calculated for each down-
sampling iteration, and the distribution of DMP numbers 
was generated for each of the nine cancer types. A two-
tailed P-value was obtained from testing the ‘true’ DMP 
number from the sex with smaller sample sizes against 
the down-sampled distribution, with the significance 
threshold defined as P-value less than 0.05.

However, the down-sampling approach was designed 
to generate the expected number of DMPs for the sex 
with larger samples when balancing the sample sizes 
bias. Importantly, this method may not be appropri-
ate for assessing variance in expected numbers of DMPs 
between sexes. To address this concern, we also imple-
mented a bootstrap-based approach. Subjects were sam-
pled with replacement for each sex across cancers using 
the smaller sample sizes. After 1000 bootstraps, female 
and male distributions were compared with Wilcoxon 
rank sum tests to determine whether the number of 
DMPs differed by sexes (P < 0.05).

Slope calculation for DNAm changes between sexes
Next, we compare the magnitude differences of DNAm 
changes (effect sizes) between females and males, utiliz-
ing sex-stratified differential methylation results through 

the following process. (1) Compute the regression slope 
of effect-size changes between female and male sub-
groups. The regression slopes and intercepts were cal-
culated through orthogonal regression implemented 
using principal component analysis. An absolute slope > 1 
indicates a larger effect in males, whereas an absolute 
slope < 1 indicates a larger effect in females. The 95% 
confidence intervals (CI) for these slopes were generated 
using the bootstrapped distribution (1000 times). (2) To 
evaluate distribution differences, we also compared the 
absolute effect size changes between sexes using Wil-
coxon rank sum test. We corrected for multiple testing 
with the false discovery rate (FDR) procedure.

Replication of sex‑stratified differential DNAm
We obtained five additional DNAm datasets as the rep-
licates from GEO database for LIHC (GSE54503) [29], 
LUAD (GSE66836) [30], COAD (GSE199057) [31], KIRC 
(GSE61441) [32], and THCA (GSE97466) [33]. Detailed 
information on these replicate datasets is provided in 
the Supplementary Table  7. The preprocessing steps 
were consistent with those applied to the discovery data-
sets. We evaluated the replication rate for sex-stratified 
DNAm results by quantified the π1 statistic in these five 
external datasets. Using the P-values derived from the 
replicate datasets, we calculated π1 using qvalue function 
from the qvalue R package (v.2.30.0) [34]. The π1 statistic 
represents the fraction of effects shared between the dis-
covery and replicate datasets. Additionally, we calculated 
Spearman’s correlation for effect sizes of CpGs identified 
as DMPs in the discovery datasets between discovery and 
replication for females and males, separately.

Amplification effects estimation
To examine the patterns of sex-specific DNAm effects 
across nine cancers, we utilized the data-driven covari-
ance model proposed by Zhu et  al. [35]. This model is 
based on the mash approach in the mashr R package 
(v.0.2.69) [36]. The mash algorithm allows for the quanti-
fication of effect-size heterogeneity and arbitrary patterns 
of correlation among sexes, thereby increasing power to 
detect both shared and sex-specific DNAm effects. We 
extracted effect sizes (DNAm changes) and correspond-
ing standard errors from each sex across nine cancers to 
fit the covariance model. The mash model learns from the 
data by estimating mixture proportions of the predefined 
covariance matrices, organized by correlations ranging 
from −1 to 1 and relative magnitude of effects between 
sexes [35]. Using maximum likelihood, mash assigns pos-
terior estimates for measurements, including posterior 
means, posterior standard errors, and local false sign rate 
(LSFR). It could reduce noise by shrinking effects towards 
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zero and could reveal greater or lesser variation in effect 
sizes between sexes across cancers.

To determine the subset of CpGs for estimating sex-
specific DNAm effects that better captures the distri-
bution of weights between sexes across cancers, we 
examined two different subsets using nominal P-values of 
1 (“all CpGs”) and 0.05 (“nominal CpGs”) as thresholds. 
These two subsets were randomly sampled using the non-
redundant number of female- and male-related DMPs 
from sex-stratified results. We observed varying patterns 
of weights for null effect matrices across cancers (Sup-
plementary Fig. 3a). The “all CpGs” subset captured more 
null effects, with an average weight of 25.23%, compared 
to “nominal CpGs”, which had only 0.20% on average. 
Additionally, most negatively correlated effects between 
sexes were more likely to be marginal effects that mostly 
cannot survival the multiple testing correction penalty 
(Supplementary Fig. 3b). It indicated that opposite direc-
tions of DNAm effects may not be a major driver of sex 
differences in cancers. Since the patterns of sex-specific 
DNAm effects were mostly consistent between these two 
subsets (Fig.  5c and Supplementary Fig.  3c), together 
with the aim of capturing more significant associations 
in cancers for both sexes and reflecting more causal sig-
nals for sex-specific DNAm effects, we decided to use the 
results of “nominal CpGs” for downstream analyses.

Sex‑heterogeneity of cancer‑related DNAm changes
To evaluate sex-heterogeneity of cancer-related DNAm 
changes, we calculated the z-score and its associated 
p-value statistic based on the effect sizes (Δβ) and stand-
ard errors (SE) from sex-stratified results with Eq. (1).

Prioritize DNAm signals associated with cancer‑related sex 
amplification effects
To effectively capture DMPs that prioritize robust sex 
amplification effects on DNAm in cancers, we integrated 
the results from sex-stratified analyses, the mash model, 
and sex-heterogeneity analyses.

We compared results from the “limma” and “mash” 
approaches and found that the “mash” method can 
overcome the statistical power restriction imposed by 
per-cancer available sample sizes (Spearman’s correla-
tion between sample sizes and the number of sex-strat-
ified DMPs, ρmash = 0.05 < ρlimma = 0.42). Additionally, we 
observed a significant correlation between the number 
of sex-stratified DMPs identified in both analyses (Spear-
man’s ρ = 0.67, P = 2.83e-03). All sex-stratified DMPs 

(1)z − score =
�βfemale −�βmale
√

SE2

female + SE2

male

identified by "limma" reached the significant threshold in 
the "mash" results (LSFR < 0.05).

We classified the identified sex-stratified DMPs into 
four main types (Supplementary Fig.  4): (1) sex-shared 
effects; (2) female-amplifiers; (3) male-amplifiers; (4) sex-
opposite effects. The detailed criteria are as follow:

 (1) Sex-shared effects:
 (2) Significant in both sexes based on sex-stratified 

results
 (3) LSFR < 0.05 based on mash results
 (4) Sex-heterogeneity associated P ≥ 0.05
 (5) Consistent direction of DNAm changes between 

sexes
 (6) Female-amplifiers:
 (7) Significant in females based on female-stratified 

results
 (8) LSFR < 0.05 based on mash results
 (9) Sex-heterogeneity associated P < 0.05
 (10) The absolute DNAm changes were greater in 

females relative to males
 (11) Consistent direction of DNAm changes between 

sexes
 (12) Male-amplifiers:
 (13) Significant in males based on male-stratified 

results
 (14) LSFR < 0.05 based on mash results
 (15) Sex-heterogeneity associated P < 0.05
 (16) The absolute DNAm changes were greater in 

males relative to females
 (17) Consistent direction of DNAm changes between 

sexes
 (18) Sex-opposite effects:
 (19) Significant in both sexes based on sex-stratified 

results
 (20) LSFR < 0.05 based on mash results
 (21) Inconsistent direction of DNAm changes 

between sexes

Cox proportional hazards regression
To evaluate the association of identified sex amplifiers 
with overall patient survival and recurrence, we applied 
Cox proportional hazards models to test the impact of 
DNAm underlying sex amplification effects on overall 
survival for each sex separately. We used Lasso regression 
for variable selection based on the cv.glmnet function in 
the glmnet R package, followed by multivariate Cox anal-
yses using the coxph function in the survival R package. 
The cox.zph function was used to check the proportional 
hazards assumption for a Cox regression model fit.



Page 6 of 21Zhou et al. Biology of Sex Differences          (2024) 15:106 

Preprocessing and statistical analyses for RNA‑seq data
We obtained RNA-seq data (count data) and sample 
characteristics for nine included cancer types from the 
TCGA data portal (https:// tcga- data. nci. nih. gov/ tcga/). 
For each cancer type, log2-transformed counts per mil-
lion (log2(CPM)) were obtained from read counts for 
gene filtering purpose using the voom function [37] in 
the limma R package. Genes with a CPM ≥ 0.1 in at least 
30% of samples were retained, and those derived from 
mitochondrial DNA were removed. Sample connectiv-
ity (z-score) was calculated using the fundamentalNet-
workConcepts function in the WGCNA R package [38], 
and samples with a z-score lower than -2 were excluded. 
Quantile normalization was then used to equalize distri-
butions across samples. Additionally, the expression of 
the XIST gene (a female-specific gene) was assessed to 
contribute to sample identity verification. Batch effects 
were corrected using the ComBat function in the sva R 
package [39]. The putative hidden factors were estimated 
by smartSVA [27] on expression measurements and fur-
ther regressed using a linear regression model.

For differential expression analysis, we performed a 
nonparametric method, the Wilcoxon rank-sum test, 
as recommended by Li et  al. [40]. This method could 
achieve comparable and better power in detecting truly 
differentially expressed genes (DEGs) than parametric 
method under this phenomenon. Significant DEGs were 
determined with a Bonferroni-adjusted P-value less than 
0.05.

eQTM mapping
The association of DNAm with proximal gene expres-
sion was defined within ± 10  kb windows centered on 
the CpG locus. We obtained regressed DNAm and gene 
expression data from matched samples for eQTM map-
ping. Spearman’s correlation test was used to assess the 
correlation between DNAm and gene expression for 
the female and male subgroups, separately. Significant 
eQTMs were determined with a Bonferroni-adjusted 
P-value less than 0.05.

X chromosome signatures
To assess the putative X chromosome inactivation (XCI) 
status for our sex-related DNAm effects, we obtained 
previously annotated XCI status across human tissues 
[41]. The known XCI categories, including 631 genes 
defined as escape (n = 99), variable escape (n = 101), or 
inactive (n = 431). We assessed enrichment of these sex-
related DNAm effects for XCI status using Fisher’s exact 
test. The significance threshold was defined as a Bonfer-
roni-corrected P-value less than 0.05.

The X chromosome is divided into five evolutionary 
strata, S1 to S5, arranged in order from the distal end of 

the long arm to that of the short arm [42–44]. Among 
these, S1 is the oldest stratum while S5 is the most recent 
one. Genes in older strata, known as the X conserved 
region (XCR), tend to get inactivated, while genes on 
more recent strata, known as the X added region (XAR), 
tend to escape inactivation. To investigate whether 
enrichment of sex-related DNAm effects on the X chro-
mosome differs across evolutionary strata, we performed 
enrichment analysis using Fisher’s exact test. The signifi-
cance threshold was defined as an FDR less than 0.05.

Genomic annotation and transcription factor binding sites 
enrichment
Gene regulatory element annotations for candidate 
cis-regulatory elements (cCREs) were derived from 
ENCODE cCREs v3 [45] and the coordinates were con-
verted to hg19 using UCSC’s liftOver tool. To annotate 
DMPs for cCREs, we extended the span of their genomic 
location by ± 200  bp and assessed enrichment with ele-
ment regions using the LOLA R package [46].

To test the enrichment of transcription factor 
binding sites (TFBS) in sex-related DNAm effects 
(within ± 200  bp), we obtained the human cistrome 
regions from Vorontsov et  al. [47], which provide the 
genome-wide maps of regions bound by TFs. We only 
used the cistrome regions supported by at least two 
experiments and at least two peak callers, ensuring the 
highest reliability, experimental, and technical reproduc-
ibility. In total, we obtained 137 TFs and tested enrich-
ment using the LOLA R package [46]. We also performed 
Hypergeometric Optimization of Motif Enrichment 
(HOMER) (v 5.1) [48], to identify enriched conserved 
motifs within these X-linked sex-amplifiers.

Significant cCREs and TFs enrichment was defined as 
FDR less than 0.05.

Functional enrichment
At the CpG level, functional enrichment of Gene Ontol-
ogy (GO) biological processes was performed using R 
package missMethyl [49], which can correct the selection 
bias introduced by the different number of probes per 
gene. At gene level, we performed gene set enrichment 
analysis (GSEA) with the function enricher implemented 
in the R package clusterProfiler [50]. We obtained the 
hallmark gene sets and canonical pathways from MSigDB 
[51] and GO terms from GeneSetDB [52]. We defined 
significant threshold for GO enrichment was P-value 
less than 0.05. The druggable targets were obtained from 
CIViC database [53], which contained 513 genes.

https://tcga-data.nci.nih.gov/tcga/
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Results
Data aggregation and study design
To investigate the sex effects on DNAm regulation in 
cancers, we obtained DNAm data and RNA-seq data 
with sufficient sample sizes (≥ 10 each sex per cancer) in 
nine major non-reproductive cancer types from TCGA 
(Supplementary Table  1). These cancer types include 
HNSC, THCA, LUAD, LUSC, LIHC, KIRC, KIRP, BLCA, 
and COAD.

The overall study design is summarized in Fig.  1. 
First, we systematically compared the extent of sex dif-
ferential DNAm between the paired cancers and NATs 
to determine whether the observed sex differences are 
reorganized in cancers. Next, employing a sex-stratified 
case–control strategy, we examined the amount, corre-
lation, and magnitude of cancer-related DNAm changes 
between sexes to decipher how sex effects influence the 
aberrant DNAm patterns in cancers. Finally, we charac-
terized correlations between the methylome and tran-
scriptome, manifesting as eQTMs, to prioritize hub 
signals underlying sex-biased DNAm regulation in can-
cers. Through this DNAm-focused integrative analysis, 
our findings enhance understanding of molecular regula-
tion in sex effects on cancers.

Attenuation of sex differences in DNAm across cancers
To determine whether sex-related differential DNAm 
is reorganized in cancers, we compared the number of 
sex-related differentially methylated positions (sDMPs) 
between the paired cancer and NAT samples across 
nine cancer types, using a conservative permutation-
based method (Methods). First, we quantified sex bias 
effects for cancers and NATs separately. In NATs, we 
identified 8,833 non-redundant sDMPs, ranging from 
3,211 in BLCA to 8,084 in KIRC (Bonferroni-adjusted 
P-value, Pbonf < 0.05, Supplementary Table  2). Mean-
while, 6,361 sDMPs were identified in cancers, ranging 
from 24 in BLCA to 5,968 in KIRC (Pbonf < 0.05, Sup-
plementary Table  2). Then, by comparing the number 
of sDMPs, we observed a significant reduction in the 
number of sDMPs in cancers compared with NATs 
for all nine cancer types (all permute P-value < 0.001, 
Fig.  2a, b, Supplementary Fig.  1a and Methods). The 
most pronounced reduction of sex differences in 
DNAm was observed in BLCA, with the fewest sDMPs 
identified in the cancer state (Fig.  2a). These results 
demonstrate a marked attenuation of sex differences at 
DNAm levels in cancers, yielding a more epigenetically 
homogeneous pattern during cancer progression.

To explore how sex-related DNAm changes were 
reduced in cancer, we employed a conservative filter-
ing process to extract sDMPs exhibiting attenuation 
(Methods). To elucidate this procedure, we defined 

Fig. 1 Study design. Schematic illustration of the key analyses used to investigate the impact of sex on DNAm in nine types of non-reproductive 
cancers. DNAm, DNA methylation; DMPs, differentially methylated positions



Page 8 of 21Zhou et al. Biology of Sex Differences          (2024) 15:106 

attenuated methylated positions (AMPs) as sDMPs that 
were significantly methylated in NATs but not in can-
cers. We identified 3,452 significant AMPs (Pbonf < 0.05), 
ranging from 426 to 1,040 AMPs per cancer (Fig.  2c 
and Supplementary Table  3). Regarding the direction 
of DNAm changes, 1,515 AMPs displayed higher meth-
ylation in males than in females and were classified as 
male-biased, while 1,970 AMPs showed higher meth-
ylation in females and were classified as female-biased. 
Overall, 63.12% (2,179/3,452) of these AMPs were 
cancer-specific (Fig.  2d and Supplementary Table  3). 
These AMPs exhibited greater DNAm changes in NATs 
than in cancers, representing the pattern of attenuation 
(Fig. 2e).

We found that 88.76% (3,064/3,452) of the AMPs were 
X-linked, a proportion that was not significantly dif-
ferent from the proportion of X-linked sDMPs in NATs 
(90.89%, 8028/8833; Fisher’s exact test, P = 0.23). Nota-
bly, 72% (442/614) of AMPs annotated genes were pre-
viously identified as X chromosome inactivation (XCI) 
genes, particularly the XCI inactive genes (Supplemen-
tary Fig.  1b, Supplementary Table  3 and 4). Positional 
enrichment on the X chromosome revealed that female-
biased AMPs were strongly enriched in the X conserved 
region of the long arm in five out of nine cancers (HNSC, 
COAD, LIHC, BLCA, and LUSC), suggesting escape 
from XCI in cancers (false discovery rate (FDR)-cor-
rected P < 0.05, Fig. 2f and Supplementary Table 4). Addi-
tionally, in contrast to male-biased AMPs, the detected 
female-biased AMPs predominantly resided in pro-
moter and proximal enhancer regions, except for KIRC 
(FDR < 0.05, Supplementary Fig.  1c and Supplementary 
Table 4).

To investigate the biological processes contributing to 
this broad attenuation of sex differences in cancers, we 
performed functional enrichment analysis on the iden-
tified AMPs. Except for KIRC and THCA, we observed 
pervasive dysregulation of the negative regulation of 
transcription in the remaining seven types of cancers 
(Supplementary Fig.  1d and Supplementary Table  5). 

Notably, dysregulation of synapse-related pathways was 
identified in LUAD, LUSC, BLCA, COAD, and KIRP 
(Supplementary Fig.  1d and Supplementary Table  5). 
Emerging evidence indicates that crosstalk between the 
nervous system and cancer is a crucial regulator of the 
tumor microenvironment [54, 55]. These findings sug-
gest that the sex differences in DNAm are reorganized in 
cancers, further contributing to the construction of the 
tumor microenvironment.

Sex‑stratified differential DNAm was largely cancer‑specific
To understand whether the alteration of DNAm in can-
cers involving sex-dependent regulation, a sex-stratified 
approach was applied to assess the differential methyla-
tion between cancers and NATs. We discovered a total of 
36,693 female-related DMPs (fDMPs, Pbonf < 0.05 and per-
mutation-based P < 0.05), with 177–9,025 fDMPs iden-
tified per cancer (Fig.  3a and Supplementary Table  6). 
Meanwhile, there were 88,811 male-related DMPs 
(mDMPs) identified (Pbonf < 0.05 and permutation-based 
P < 0.05), ranging from 931 to 44,030 mDMPs per cancer 
(Fig. 3a and Supplementary Table 6). Of these, essentially 
all (~ 99%) of the sex-stratified DMPs were located at 
autosomes (Fig.  3a). We quantified the replication rates 
for these sex-stratified DMPs in five external datasets for 
LIHC, LUAD, COAD, KIRC, and THCA and observed 
high replication rates (average π1 in females: 0.89; in 
males: 0.90; all spearman’s ρ > 0.70; Fig.  3b, Supplemen-
tary Fig. 2a and Supplementary Table 7).

Although the number of DMPs differed between males 
and females across cancers, an average of 23% of sex-
stratified DMPs overlapped (Fig.  3a). The highest over-
lap was in COAD (43%), while BLCA had the lowest (3%; 
Fig. 3a). Furthermore, sex-stratified DMPs showed a pro-
nounced cancer-specific pattern, with 77.41% of fDMPs 
and 67.07% of mDMPs being unique to individual can-
cers (Fig. 3c, Supplementary Fig. 2b).

The number of sex-stratified DMPs across cancers 
varies considerably, which may reflect sample sizes dif-
ferences (Spearman’s ρ = 0.42, Fig.  3a). To ensure such 

(See figure on next page.)
Fig. 2 Attenuation of sex differences in DNAm across nine cancers. a Overview of methods for identifying statistically significant differences 
in the number of sDMPs across nine cancers. The comparison of BLCA versus NAT is used here as an example. Left, the true difference in the number 
of sDMPs between BLCA and NAT samples. Right, a permuted null distribution (1000 times) is then used to determine the significance 
of the difference in the number of sDMPs between BLCA and NAT samples. b The true differences in the number of sDMPs between the paired 
cancers and NAT samples across all nine cancers. All pairs reaching a permutation P < 0.001. c The number of AMPs identified in each cancer. The 
number of female- (higher DNAm levels in females) and male-biased (higher DNAm levels in males) AMPs are indicated. d UpSet plot of AMPs’ 
overlap between pairs of cancers. Dark dots and lines indicate that the set participates in the intersection. The doughnut chart indicates the cancer 
sharing profile of AMPs. e, PC1 of DNAm levels of AMPs between cancer and NAT samples across all pairs. f The enrichment of X-linked AMPs 
across these five evolutionary strata, labeled as S1 (the most conserved region) to S5 (the most recent region), arranged in order from the distal 
end of the long arm to the short arm. *FDR < 0.05; **FDR < 0.01; ***FDR < 0.001. sDMPs sex-related differentially methylated positions, NAT normal 
adjacent tissues, AMPs attenuated methylated positions, PC1 principal component 1
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Fig. 2 (See legend on previous page.)
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sex bias were not driven by sample size differences, we 
performed 1000 rounds of down-sampling analyses and 
bootstrapping tests. Three types of cancers (COAD, 
LUAD, BLCA) exhibited significant sex differences in the 

number of DMPs based on the down-sampling analyses, 
with LUAD and COAD having more DMPs in females 
and BLCA having more DMPs in males (Supplemen-
tary Fig. 2c). Additionally, six other cancer types showed 

Fig. 3 Sex-stratified cancer-related differential DNAm. a Discovery of sex-stratified DMPs across nine cancer types. Left, the number of sample sizes 
per sex and group (heatmap). Right, the number of identified fDMPs and mDMPs (Bonferroni-adjust P < 0.05 and permutation P < 0.05, histogram). 
Proportions of X-linked and autosomal f(m)DMPs (chr.) and of the overlap between fDMPs and mDMPs per cancer are indicated (stacked bar plots). 
b Replication rates (π1) for identified fDMPs and mDMPs in five types of cancers (LIHC, LUAD, COAD, KIRC, and THCA). c Cancer sharing profile 
of sex-stratified DMPs. d Absolute values of effect sizes for fDMPs and mDMPs. The dashed lines represent the median of effect sizes per sex. The 
FDR-corrected P-values according to paired Wilcoxon signed-rank tests are presented. fDMPs female-related DMPs, mDMPs male-related DMPs
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significant sex bias using the bootstrap-based approach 
(Supplementary Fig. 2d).

We next investigated whether the correlation and mag-
nitude of DNAm changes differed by sex in cancers. The 
effect sizes were highly correlated between sexes across 
cancers, with ~ 99% of the sex-stratified DMPs showing 
consistent direction of DNAm changes (all Spearman’s 
ρ > 0.8, Supplementary Fig. 2e). Notably, the distribution 
of DNAm changes was significantly sex-biased across 
all nine cancers (paired Wilcoxon signed-rank test with 
FDR-corrected P < 0.05, Fig.  3d). The most prominent 
sex difference was observed in BLCA, with a significantly 
male-biased magnitude of DNAm changes (Fig.  3d). 
These results indicate largely consistent directional 
DNAm changes between sexes, but with varying magni-
tudes across cancers.

Sex‑by‑cancer interaction effects on DNAm were 
ubiquitous across cancers
We next evaluated the interaction effects between sex 
and cancer (cancer or NAT) across all nine cancers. 
There were 1,642 interaction DMPs identified, with 386 
(23.51%) showing differential methylation in more than 
two different cancer types, suggesting cancer-dependent 
regulation (Fig. 4a, b and Supplementary Table 8). These 
interaction DMPs were largely X-linked (86.67%, Fig. 4a). 
Only a limited fraction of interaction DMPs overlapped 
with the identified sex-stratified DMPs, representing 
15.11% for fDMPs and 30.49% for mDMPs on average 
(Fig.  4c). These suggest that these two analytical strate-
gies complement each other and coordinately reflect the 
sex effects on DNAm in cancers.

We conducted functional enrichment analyses of the 
interaction DMPs across cancers, identifying significant 
enrichment in pathways associated with cell metabo-
lism, cell cycle control, immune response, and tumor 
microenvironment interactions (Supplementary Table 8). 
Notably, synapse-related pathways were commonly dys-
regulated across most cancers, except THCA, underscor-
ing the potential impact of sex effects on cancer-nervous 
system interactions.

To investigate the sex-specific effects of these interac-
tion DMPs, we directly compared the DNAm changes of 
these loci in a sex-stratified manner. We found that the 
effect sizes of these interaction DMPs were significantly 
sex-biased in six out of nine cancers (Fig.  4d and Sup-
plementary Fig.  2f ). Specifically, THCA (Slope, S = 3.1, 
FDR < 0.001), COAD (S = 2.8, FDR < 0.001), HNSC 
(S = 2.3, FDR < 0.001), BLCA (S = 1.9, FDR = 0.039), KIRC 
(S = 1.8, FDR = 0.032), and LUAD (S = 1.5, FDR = 0.002) 
showed larger magnitude of changes in males than in 
females. These observations are consistent with the sex-
stratified results, highlighting that sex effects on cancers 

may largely manifest through differences in the magni-
tude of multiple DNAm effects.

Amplification effects of DNAm account for sex differences 
in cancers
Our observations highlight a pervasive sex difference in 
the magnitude of DNAm effects on cancers. However, 
involving dysregulation of multiple genes during cancer 
progression, how to quantify the extent of sex-depend-
ent effects in cancers presents a challenge. Inspired by 
a recent study [35] that proposed sex differences in the 
magnitude of many genetic effects (‘‘amplification’’) as 
the primary mode of gene-by-sex interaction in complex 
human traits, we inferred that such a theory could be 
extended to DNAm levels in cancers. To evaluate the sex-
dependent amplification effects in cancers, we examined 
the covariance relationships of DNAm effects between 
females and males using the multivariate adaptive shrink-
age (mash) approach (Methods).

For these nine cancer types, we noticed that the DNAm 
effects exhibiting negative correlation (corr < 0) were 
more likely to be marginal effects, unable to survive 
the multiple testing correction penalty (Supplemen-
tary Fig. 3b). On average, 68% of DNAm effects showed 
perfect correlation (corr = 1) between sexes in cancers, 
with an additional 27% exhibiting partial correlation 
(0 < corr < 1) (Fig. 5a, Supplementary Fig. 3d and Supple-
mentary Table 9). These suggest that most DNAm effects 
were perfectly or partially correlated. While negative 
correlation, representing opposite regulation of DNAm 
between sexes, may not be the primary driver of sex dif-
ferences in cancers.

In terms of magnitude relationships, we found wide-
spread sex-biased effect sizes across cancers. Specifi-
cally, on average, 34% of effects exhibited male-biased 
larger DNAm changes across the nine cancers, while 20% 
exhibited female-biased larger changes (Fig.  5b, Supple-
mentary Fig. 3d and Supplementary Table 9). These find-
ings align with our sex-stratified results, indicating that 
the cancer-related DNAm effects between sexes were 
largely correlated but with varying magnitudes.

We next classified these nine cancer types based on 
the difference between the fraction of male- and female-
larger effects. The female-biased group included LUSC, 
LIHC, COAD, and KIRC, each exhibiting a relatively 
greater percentage of female-larger effects (Fig. 5c, Sup-
plementary Fig.  3c and Supplementary Table  9). The 
male-biased group included BLCA, THCA, KIRP, LUAD, 
and HNSC, each showing a relatively higher percentage 
of male-larger effects (Fig. 5c, Supplementary Fig. 3c and 
Supplementary Table  9). Remarkably, BLCA displayed 
the greatest magnitude of DNAm changes in males. Of 
the 79% weights on matrices showing perfect correlation 
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between sexes, 78% of the weights represented larger 
DNAm changes in males, with 46% exhibiting three times 
male-larger effects (Fig.  5d, Supplementary Fig.  3d and 
Supplementary Table  9). Together, these observations 

point to amplification effects of DNAm as the primary 
mode for sex differences in cancers.

Fig. 4 Sex-by-cancer interaction effects on DNAm. a Discovery of sex-by-groups interaction DMPs across nine cancer types. The proportions 
of X-linked and autosomal f(m)DMPs (chr.) per cancer are indicated (left, stacked bar plots). The number of interaction DMPs per cancer are shown 
(right, histogram). Legend colors are as in Fig. 3. b Cancer sharing profile of interaction DMPs. c Pie plots indicate the proportions of overlap 
between interaction DMPs and sex-stratified DMPs per cancer. d Cancer-related differential methylation effect size of females compared with males 
for the interaction DMPs per cancer. The slope (S) is calculated using principal components regression, with *FDR < 0.05 indicating that S 
is significantly different between sexes (see details in Methods). The dashed line represents equal effects between females and males when S = 1



Page 13 of 21Zhou et al. Biology of Sex Differences          (2024) 15:106  

DNAm signals exhibiting cancer‑related sex amplification 
effects
We then prioritized the hub DNAm signals represent-
ing the observed magnitude differences in cancer-
related DNAm changes across sexes. We assessed the 
heterogeneity in effect sizes between sexes for each 

cancer and integrated these results with sex-stratified 
findings and posterior estimates assigned by the mash 
model (Supplementary Fig. 4; Methods). These analyses 
yielded 3,361 female-amplifiers, 11,837 male-amplifi-
ers, and 25,911 sex-shared DNAm effects across nine 
types of cancers (Fig. 6a and Supplementary Table 10). 
No significant opposing effects between sexes were 

Fig. 5 Amplification effects on DNAm in cancers. a Proportions of weights on different types of correlation relationships between female 
and males for each cancer. Perfect correlation is indicated when corr = 1. Partial correlation is represented when 0 < corr < 1. Negative correlation 
is denoted when corr < 0. Uncorrelated condition is described when corr = 0. b Proportions of weights on different types of magnitude relationships 
between sexes for nine cancers. "female > male" indicates larger effect sizes in females than in males. "female < male" indicates larger effect sizes 
in males than in females. "female = male" represents equal effect sizes between sexes. c The difference between the fraction of male-larger effects 
and the fraction of female-larger effects classified these nine cancer types into female- and male-biased group. The male-biased group is located 
above the diagonal, while female-biased group is located below the diagonal. d Example of weights on covariance matrices for BLCA, which 
exhibited the greatest magnitude of DNAm changes in males
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identified (Fig.  6a). These DNAm effects were largely 
(> 81%) cancer-specific (Fig. 6b).

To determine the functional regulatory role of these 
sex-shared and sex-amplified effects in cancers, we per-
formed enrichment analysis of genomic functional ele-
ments for these effects. We found that these effects were 
both significantly enriched in gene regulatory regions, 
particularly in gene body regions, untranslated exon 
regions (UTRs), and distal enhancer regions (Fig. 6c and 
Supplementary Table 11).

DNAm in enhancer regions is closely linked to regulat-
ing gene expression. We inferred that could sex-specifi-
cally affect the occupancy of transcription factors (TFs) 
at their binding sites (TFBSs). To test this, we exam-
ined the enrichment of 137 TFs for their binding sites 
in sex-shared and sex-amplified effects. We found that 
the enrichment for TFBSs were largely driven by hypo-
methylated DMPs (Fig. 6d and Supplementary Table 12). 
Among the tested TFs, 54.74% (75/137) were sex-specif-
ically enriched in at least one cancer type, with TFBSs 
for 24 TFs implicated in two types (Fig. 6d). Such is the 
case of EGR2, which was specifically enriched in female-
amplifiers of both LUAD and HNSC (Fig. 6d). A recent 
study highlighted the role of EGR2 in coordinating the 
alveolar macrophage functional program [56]. Our find-
ings imply a female-specific role of EGR2 in LUAD under 
the influence of female-amplified aberrant DNAm. More-
over, 14 TFs displayed sex-biased roles in different can-
cers according to the enrichment profiles (Fig.  6d and 
Supplementary Table  12). For instance, CTCF was sig-
nificantly enriched in male-amplifiers in COAD, whereas 
in female-amplifiers in LIHC. Additionally, to identify 
enriched conserved motifs within the X-linked sex-
amplifiers in cancers, we used HOMER [48]. Our analy-
sis revealed enrichment for three conserved TF motifs 
among the X-linked female-amplifiers and 66 motifs for 
the male-amplifiers (Supplementary Table  12). Nota-
bly, 17 TFs among the X-linked male-amplifiers exhib-
ited motif enrichment across more than two cancer 

types, including AP-1, E2F1, and Sox7. Importantly, the 
enriched motifs for female- and male-amplifiers were 
distinct.

To understand the biological roles of sex-amplified 
DMPs in cancers, we performed functional enrichment 
analyses. For female-amplifiers, we observed dysregula-
tion of immune-related pathways, including interleu-
kin-18-mediated signaling in LIHC, type I interferon 
signaling in HNSC, and antigen presentation via MHC 
class II in BLCA (Supplementary Fig. 5a and Supplemen-
tary Table  13). In male-amplifiers, pathways related to 
cell proliferation, migration, and TGF-β signaling were 
affected, such as negative regulation of endothelial cell 
proliferation in LUSC, regulation of cell migration in 
KIRC and THCA, and response to TGF-β in BLCA (Sup-
plementary Fig. 5b and Supplementary Table 14).

Given the pervasive enrichment of synapse-related 
pathways among AMPs, we examined sex-amplified 
genes within synaptic biological functions using the 
SynGO database [57]. We found that 244 female-ampli-
fied genes and 540 male-amplified genes were anno-
tated with synaptic functions. Although synaptic process 
enrichment is broadly consistent between sexes, dif-
ferences exist in the specific biological terms and genes 
mapped within the SynGO hierarchy (Supplementary 
Fig. 5c and Supplementary Table 15). For example, male-
amplified genes such as DLG3, PORCN, and PPFIA1 are 
involved in regulating postsynaptic membrane neuro-
transmitter receptor levels across multiple cancer types. 
In contrast, a distinct set of female-amplified genes, such 
as NRXN3 and EFNB2, are linked to the same pathway 
in comparable cancer types. Additionally, male-ampli-
fied genes EXOC2, ATG16L1, and NETO1 are associ-
ated with axonal transport in BLCA, HNSC, COAD, 
and KIRP, indicating potential male-specific pathological 
mechanisms. The diversity of synaptic functions among 
sex-amplified genes implies that various functional inter-
actions between sex and cancer risk converge at the 
synapse.

(See figure on next page.)
Fig. 6 Prioritize DNAm signals exhibiting cancer-related sex amplification effects. a The number of cancer-related DMPs exhibiting the sex 
amplification effects (right, histogram). No significant opposite effects between sexes were identified. Proportions of X-linked and autosomal 
DMPs for sex-shared effects, female-amplifiers, and male-amplifiers (left). b Cancer sharing profile of sex-shared effects, female-amplifiers, 
and male-amplifiers. c Enrichment of genomic functional elements (CGI regions, genomic features, and cCRE regions) for sex-shared effects 
and sex-amplifiers. The signed odds ratios are labeled in colors (two-sided: hypermethylated and hypomethylated). Significant FDR-corrected 
P-values are indicated (*FDR < 0.05). d Sex-specific TFBS enrichment for sex-shared DMPs and sex-amplifiers. The TFs that were sex-specifically 
enriched in cancers are depicted (top). The TFBS enrichment profiles for each cancer are shown (bottom). The red words represent TFs 
with female-specific TFBSs enrichment, blue words represent TFs with male-specific TFBSs enrichment, and black words represent TFs 
with sex-biased TFBSs enrichment. The signed odds ratios are labeled in colors (two-sided: hypermethylated and hypomethylated). Significant 
FDR-corrected P-values are indicated (*FDR < 0.05). e The heatmaps illustrate the top three significantly estimated hazard ratios (HRs) for each 
cancer, which are associated with overall survival. *P < 0.05; **P < 0.01; ***P < 0.001. CGI CpG island, cCREs candidate cis-regulatory elements, TFBSs 
transcription factor binding sites
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Fig. 6 (See legend on previous page.)



Page 16 of 21Zhou et al. Biology of Sex Differences          (2024) 15:106 

To demonstrate the functional and clinical relevance 
of these DNAm divergences, we assessed the association 
of sex-amplifiers with overall patient survival and recur-
rence following initial treatment. Using Lasso regres-
sion for variable selection followed by multivariate Cox 
analysis, we identified 24 female-amplifiers and 29 male-
amplifiers that were sex-specifically associated with over-
all survival (Fig.  6e and Supplementary Table  15). For 
example, the female amplifier for BLCA, cg19395441, was 
significantly associated with overall survival in females 
(HR = 1.48, 95% CI 1.21–1.82, P < 0.001) but not in males 
(HR = 0.96, 95% CI 0.86–1.07, P = 0.48). Additionally, we 
identified 15 female-amplifiers and 13 male-amplifiers 
associated with recurrence (Supplementary Table  15). 
These findings highlight the potential of identified sex-
amplifiers as the sex-specific prognostic biomarkers.

Integration of DNA methylation and gene expression 
highlights sex‑dependent regulation and biological 
processes
The primary function of DNAm is to regulate gene 
expression. To gain insight into its potential regulatory 
role, we characterized the correlations between methy-
lome and transcriptome (eQTMs) in each sex per can-
cer, using matched samples. A total of 38,969 eQTMs 
were identified in females, ranging from 1,135 in KIRP 
to 17,685 in LUAD (Spearman’s Pbonf < 0.05, Fig.  7a and 
Supplementary Table  16). Meanwhile, 77,930 eQTMs 
were observed in males, ranging from 2,770 in THCA to 
28,605 in BLCA (Spearman’s Pbonf < 0.05, Fig. 7a and Sup-
plementary Table 16). On average, 24.17% of eQTMs were 
shared between sexes with consistent directions of corre-
lation (Fig. 7a), and none of the eQTMs exhibited oppo-
site correlations between sexes. Among these eQTMs, 
71.74% (27,958/38,969) of female-related eQTMs and 
56.19% (43,788/77,930) of male-related eQTMs were sig-
nificantly correlated in only one type of cancer, indicating 
cancer-dependent regulation (Fig. 7b). The prevalence of 
sex-specific eQTMs across cancers highlights extensive 
sex-dependent regulatory mechanisms.

To investigate the functional mechanisms underly-
ing these eQTMs, we performed enrichment analysis of 
candidate cis-regulatory elements (cCREs) for eCpGs 
in negatively and positively correlated eQTMs per sex, 
respectively. A similar enrichment pattern was observed 
in female- and male-related eQTMs. In both sexes, posi-
tively correlated eQTMs were more frequently enriched 
in distal enhancer regions and insulators, whereas nega-
tively correlated eQTMs were predominantly enriched in 
promoters and proximal enhancer regions (Supplemen-
tary Fig. 6a and Supplementary Table 17).

We next prioritized eQTM pairs associated with sex-
amplified DMPs. For female-amplifiers, 48 eQTMs 

were extracted across five types of cancers (number of 
eQTMs in descending order; LUAD: 27, LIHC: 8, COAD: 
7, KIRC: 4, and THCA: 2, Fig.  7c and Supplementary 
Table  18). These eQTMs comprised 44 eCpGs and 42 
eGenes, with a majority (68%, 33/48) exhibiting negative 
correlations (Fig. 7c). Consistent with DNAm patterns, 32 
eGenes demonstrated greater magnitudes of expression 
changes in females compared to males (Supplementary 
Table 18). Notably, in LIHC, three female-amplifier CpGs 
(cg01714932, cg08729600, and cg10479063) were signifi-
cantly negatively correlated with PZP gene expression 
(Spearman’s Pbonf < 0.05), with larger expression changes 
in females (Fig.  7d and Supplementary Table  18). Addi-
tional notable eQTM pairs for female-amplifiers included 
cg17306740-ZBP1 in LUAD, cg01765174-TRIM14 in 
COAD, and cg25748357-GRB10 in KIRC (Supplemen-
tary Fig. 6b-d and Supplementary Table 18).

Regarding the male-amplifiers, 380 eQTMs were 
extracted for eight cancer types linked to 356 eCpGs 
and 272 eGenes (number of eQTMs in descending 
order; KIRP: 183, HNSC: 68, KIRC: 40, LUSC: 34, LIHC: 
27; COAD: 15, LUAD: 12, THCA: 4, Fig.  7c and Sup-
plementary Table  18). Of these, 277 eQTMs exhibited 
negative correlations (Fig.  7c), with 285 showing con-
sistently greater magnitudes of DNAm and gene expres-
sion changes in males. For instance, the male-amplifier 
cg12560128 was negatively correlated with OAS2 and 
OAS3 in COAD (Fig.  7e and Supplementary Table  18), 
both known immune biomarkers linked to the tumor 
microenvironment [58, 59]. Additionally, HRH1, which 
correlated negatively with cg17660833 in KIRC, has been 
implicated in T cell dysfunction and is frequently upregu-
lated in the tumor microenvironment [60]. (Fig.  7e and 
Supplementary Table  18). Additional examples include 
cg06490988-GATA2 in KIRP, cg19193956-TWIST1 in 
HNSC, cg13784235-NR2E1 in LUSC and cg15652212/
cg22531018/cg21852589-TMEM139 in LIHC (Supple-
mentary Fig.  6e-j and Supplementary Table  18). These 
results suggest that sex-amplified DNAm changes can 
influence downstream gene expression, contributing to 
consistent sex-biased differential expression in cancers.

To elucidate the biological roles of genes regulated by 
sex-amplifiers through eQTMs, we performed func-
tional enrichment analysis. Our findings indicate that 
genes regulated by male-amplifiers are associated with 
cancer development-related pathways, including vascu-
lature development, epithelial cell differentiation, and 
myeloid cell differentiation (Supplementary Fig.  7 and 
Supplementary Table 19). In contrast, genes regulated by 
female-amplifiers are linked to specific pathways, such as 
sprouting angiogenesis in COAD and cell communica-
tion in THCA (Supplementary Fig. 7 and Supplementary 
Table 19).
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We further evaluated the therapeutic potential of 
genes regulated by sex-amplifiers through eQTMs. 
Using druggable targets annotated in the CIViC data-
base [53], we found that several genes were previous 
identified as drug targets (Supplementary Table 18). For 
instance, ECSCR in LUAD and PTK2B (also known as 
PYK2) in COAD were regulated by female-amplifiers, 
while GATA2 in KIRP, ERBB3 in HNSC, and POU5F1 
in KIRC were regulated by male-amplifiers. These 
observations indicate that these previously identi-
fied druggable targets may have a sex-specific role in 
cancers.

Discussion
Based on these DNAm-focused integrative analyses, 
the findings presented here substantially refine our 
understanding of sex differences in cancers. Our analy-
ses revealed a notable attenuation of sex differences in 
DNAm within cancer tissues compared to paired NATs. 
Using a sex-stratified case–control approach, we uncov-
ered widespread and largely cancer-specific sex-depend-
ent dysregulation of DNAm across various cancers. 
Furthermore, comparing the covariance relationships of 
cancer-related DNAm changes between sexes revealed 
that the amplification effect of DNAm contributes to 

Fig. 7 Characterizing the correlations between DNAm and gene expression. a Discovery of eQTMs pairs per sex and per cancer. Left, the number 
of sample sizes per sex and per cancer (heatmap). Right, the number of eQTMs (Bonferroni-adjust P < 0.05, histogram). The sex-overlapped 
eQTMs, female-specific eQTMs, and male-specific eQTMs are indicated. b Cancer sharing profile of eQTMs per sex. c Discovery of the detected 
sex-amplifiers with significantly sex-stratified differential gene expression using eQTM pairs. The directions of correlation are depicted. d Examples 
of female-amplifiers that were significantly correlated with gene expression of target genes, exhibiting a consistently greater magnitude of gene 
expression changes in females compared to males. e Examples of male-amplifiers that were significantly correlated with gene expression 
of target genes, exhibiting a consistently greater magnitude of gene expression changes in males compared to females. *Pbonf < 0.05; **Pbonf < 0.01; 
***Pbonf < 0.001. eQTMs methylome and transcriptome correlations
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the observed sex differences. Characterization of the 
gene expression regulation of DNAm through eQTMs 
showed that sex-amplified DNAm variations in cancer 
could influence the expression of target genes, leading to 
consistent sex-biased differential expression. Collectively, 
these results provide critical insights into the mecha-
nisms driving sex differences in DNAm within cancers.

Sex differences in the genomics of healthy individuals 
and cancers have been previously revealed [9–12]. How-
ever, the lack of studies leveraging the sex differences 
between these two conditions has left it unclear whether 
such disparities are reorganized during cancer progres-
sion. By comparing with paired NATs, we observed a 
striking reduction of sex differences in DNAm across 
cancers, resulting in a more epigenetically homogene-
ous pattern between sexes within cancers. These find-
ings underscore the importance of including matched 
NAT samples when examining sex effects in cancers. As 
expected, the AMPs, which exert their influence through 
the attenuating role of sex-related differential DNAm, 
were primarily X-linked. Remarkably, we found that 
these X-linked AMPs, with larger methylation levels in 
females, were mostly located in the conserved regions of 
X chromosomes, where genes typically get inactive. This 
suggests a potential mechanism for the reorganization 
of DNAm patterns within X chromosome during cancer 
progression, likely driven by escape from XCI. Surpris-
ingly, a significant enrichment of synapse-related path-
ways in AMPs was identified in a wide range of cancers, 
including LUAD, LUSC, BLCA, COAD, and KIRP. Addi-
tionally, we observed a diverse range of synaptic func-
tions among interaction DMPs and sex-amplified genes 
across cancers. Recent studies have highlighted the criti-
cal role of both the peripheral and central nervous sys-
tems in regulating tumorigenesis and metastasis [61, 62]. 
Our findings extend the burgeoning field of cancer neu-
roscience into a sex-dependent context, suggesting that 
various functional interactions between sex and cancer 
risk converge at the synapse.

The imbalance of sex differences in DNAm between 
cancer and NATs raises the question of whether the 
extent of DNAm alteration in cancers differed by sex. By 
applying a sex-stratified case–control strategy and inves-
tigating the covariance relationships between sexes, we 
found that the identity and direction of differential meth-
ylation were largely shared between sexes, resulting in 
highly correlated effect sizes. However, the magnitude of 
DNAm changes differed. These observations align with a 
recent study that proposed amplification as the primary 
mode of gene-by-sex interaction in human complex traits 
[35]. Our work extends this theory to the disease level of 
cancer. Despite mixed covariance relationships of DNAm 
effects across sexes within each cancer types, we noticed 

that these mixture weights could be concentrated on one 
sex. By analyzing the ratios of male-to-female weights, 
we categorized these nine cancer types into male-biased 
(BLCA, THCA, KIRP, LUAD, and HNSC) and female-
biased (LUSC, LIHC, COAD, and KIRC) groups. Particu-
larly notable was the striking concentration of mixture 
weights for BLCA on the male-biased magnitudes. Previ-
ous research defined weak and strong sex-effect groups 
based on sex-biased molecular signatures within cancer 
tissues [9]. We observed that eight of the cancers in our 
analysis (BLCA, THCA, KIRP, LUAD, HNSC, LUSC, 
LIHC, and KIRC) align with the previous defined strong 
sex-effect groups [9]. It indicating that our approach to 
studying sex effects on DNAm in cancers advances pre-
vious classifications into a sex-specific scenario, which 
could facilitate the understanding of how sex effects con-
tribute to different cancer types.

Our study reported a series of DMPs exhibiting sex-
amplified roles in different cancers and noted cancer 
specificity in the enrichment of TFBSs for these sex-
amplifiers. This enrichment was largely driven by hypo-
methylated DMPs. Loss of DNAm at TFBSs can active 
specific TF networks during reprogramming and cancer 
progression [63, 64], indicating sex-dependent regula-
tion involved. Notably, among the 14 TFs whose binding 
sites were sex-dependently enriched across different can-
cers, eight were previously found to be enriched among 
sex-biased expressed genes, including SP1, ETV1, ELF1, 
E2F1, CREB1, CTCF, SIX2, and SOX2 [11]. Moreover, 
several TFs play known roles in cancers, such as ASCL1 
[65, 66], NCOR1 [67], SMAD2 [68], and SMAD4 [68]. 
However, the interaction between sex and cancer on 
most TFs remains uncharacterized. Importantly, TFBSs 
enrichment in sex-amplifiers is not driven by sex-biased 
methylation of the TFs themselves. Additionally, genes 
related to sex amplifier-related eQTMs were not those 
TFs whose binding sites were enriched in sex-amplifiers. 
Our findings align with the observation that sex-biased 
TF targeting of genes is independent of sex-biased gene 
expression [11, 12]. These findings indicate that the inter-
play between sex and cancer may act through influence 
on the binding sites of TFs by sex-amplified DNAm dys-
regulation. DNAm regulation in cancers is sex-biased, 
and further investigation is warranted to verify these 
findings, as observed patterns may originate from a vari-
ety of mechanisms.

Notably, our analysis revealed that sex-amplified DMPs 
exhibit higher cancer specificity compared to sex-strat-
ified DMPs. Specifically, 93% of male-amplified DMPs 
and 97% of female-amplified DMPs were exclusive to 
one single cancer type, significantly exceeding the cancer 
specificity observed for sex-stratified DMPs, which were 
77.41% for females and 67.07% for males. One plausible 
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explanation for this observation is that sex-amplified 
DMPs represent DNA methylation divergences charac-
terized by substantial differences in effect size between 
sexes, which are accentuated in specific cancer contexts. 
This reflects the unique biological mechanisms underly-
ing sex-biased DNA methylation changes that amplify in 
the context of particular cancers, driven by both sex- and 
cancer-specific factors. Consequently, the pronounced 
cancer specificity of sex-amplified DMPs underscores 
their potential as highly precise biomarkers for can-
cer diagnosis and prognosis, emphasizing their clinical 
relevance.

Several limitations should be noted. The datasets 
obtained from TCGA were not initially designed to 
investigate sex effects in cancers, resulting in an imbal-
ance of samples sizes between females and males. In this 
study, rigorous methodology was used to account for bio-
logical and technical variability, ensuring that the results 
reported here are conservative and generalizable. Fur-
ther studies are still needed to increase the sample size 
and validate the key findings. Additionally, we acknowl-
edge the limited statistical power for survival analysis 
for recurrence in KIRC, which is due to the availability 
of data for only two patients in TCGA. This limitation 
may be attributed to the relatively favorable prognosis 
of KIRC or potential information loss during follow-up. 
Moreover, to better decipher the crosstalk between sex 
effects and cancer progression, employing analyses of 
individual changes over time will be necessary for further 
refinement of the results presented here.

Conclusion
By systematically comparing the sex differences between 
cancers and NATs, our research provides a comprehen-
sive overview of the DNAm landscape with respect to sex 
differences in cancers. Our study revealed a significant 
attenuation of sex differences in cancers and highlighted 
that amplification effects of DNAm predominantly drive 
the observed sex differences during cancer progression. 
These findings substantially advance our understanding 
of the interplay between DNAm and sex in cancer etiol-
ogy. Additionally, our study identifies promising candi-
date CpGs and genes for further sex-specific functional 
characterization and drug development.
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