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Abstract
Background Alzheimer’s disease (AD) disproportionately and uniquely affects females, and these sex differences 
are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset 
AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this 
study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in 
AD pathogenesis, differently by sex in middle-aged rats.

Methods A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult 
neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of 
the hippocampus in 13 month-old male and female rats.

Results We observed basal sex differences in neurogenesis at middle age, as wildtype male rats had greater densities 
of neural progenitor cells and new-born neurons in the dentate gyrus than wildtype female rats. Male hAPOEε4 rats 
exhibited fewer neural progenitor cells, fewer new-born neurons, and more microglia than male wildtype rats. On 
the other hand, female hAPOEε4 rats exhibited more new-born neurons than female wildtype rats. Interestingly, 
females had more microglia than males regardless of genotype. Correlations were conducted to further elucidate any 
sex differences in the relationships between these biomarkers. Notably, there was a significant positive correlation 
between neural progenitor cells and new-born neurons, and a significant negative correlation between new-born 
neurons and microglia, but only in male rats.

Conclusion In contrast to the clear pattern of effects of the hAPOEε4 risk factor on hippocampal neurogenesis 
in males, females had unaltered levels of neural progenitor cells and increased density of new-born neurons. 
Furthermore, relationships between neurogenesis and microglia were significantly correlated within males, and 
not females. This suggests that females may be presenting a compensatory response to the hAPOEε4 genotype at 
middle age. Collectively, these results exemplify the importance of thoroughly examining influences of sex on AD 
endophenotypes, as it may reveal sex-specific pathways and protective mechanisms relevant to AD.
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Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder characterized by cognitive decline and path-
ological changes in the brain [1]. Over 90% of AD cases 
are sporadic, occurring after 65 years of age in humans [2]. 
In addition to advancing age, the greatest non-modifiable 
risk factors for sporadic AD are female sex and Apolipo-
protein (APOE) ε4 genotype. Human females experience 
greater lifetime risk for sporadic AD, and those with AD 
have elevated levels of neuropathology and faster cogni-
tive decline compared to human males with AD [3–6]. 
Apolipoprotein E (APOE) accounts for approximately 
25% of the total heritability of sporadic AD; inheriting 
one or both copies of the APOE ε4 alleles increases risk 
by 3 or 15-fold, respectively, and at least one copy of the 
allele is present in 40–65% of individuals with AD [7]. Fur-
thermore, APOEε4 genotype is associated with increased 
amyloid deposition and dysfunction of the medial tempo-
ral lobe, features related to AD [8–10]. Intriguingly, the 
combination of female sex and APOEε4 genotype pres-
ents with more endophenotypes of AD, as female APOEε4 
carriers experience greater AD risk, AD neuropathology, 
including phosphorylated tau, and cognitive impairment 
compared to male APOEε4 carriers [11–15]. Understand-
ing how the relationship between sex and APOEε4 geno-
type can contribute to AD manifestation and progression 
is key to informing precision medicine in AD. Further-
more, examination of brain health biomarkers at middle 
age is particularly relevant due to the increasing risk for 
late-onset AD during this period as well as heightened sex 
differences in the impact of APOEε4 on AD risk [16, 17].

The hippocampus is a particularly compelling brain 
region to investigate because it is one of the first regions 
impacted by the pathogenesis of AD and compromised 
hippocampal integrity is related to the decline in hippo-
campus-dependent cognitive functions in AD [18–21]. 
The dentate gyrus of the hippocampus retains its abil-
ity to produce new neurons throughout life in all mam-
malian species studied [22, 23]. Although there are 
some reports contesting the existence of newly gener-
ated neurons in the adult human hippocampus [24, 25], 
these findings have been challenged based on method-
ology [26–29]. Furthermore, there are multiple lines of 
evidence, derived from various methods, in support of 
hippocampal neurogenesis persisting in adult humans 
[22, 23, 30–37]. The process of neurogenesis involves 
neural progenitor cells that migrate, differentiate, and 
mature into neurons. These new-born neurons can 
modulate functions of the hippocampus, including pat-
tern separation, which is compromised early in AD [38, 
39]. Neurogenesis in the hippocampus is closely linked 
to the pathogenesis of AD [40] and altered neurogen-
esis might have important implications for the cogni-
tive deficits seen in AD [41]. There is literature showing 
that hippocampal neurogenesis is increased early in 
the disease, potentially as a compensatory mechanism 
[42, 43], and decreased as AD severity advances in later 
stages [18, 40]. There are striking sex differences in the 
hippocampus and the trajectory and regulation of adult 
neurogenesis [44, 45]. In addition to morphological dif-
ferences, the temporal dynamics of neurogenesis differ by 
sex, such that males have faster maturation and attrition 
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rates of adult-born neurons compared to female rats 
[45]. Together, these findings indicate that hippocampal 
neurogenesis is intricately involved in the progression of 
AD, and thus, investigating how it might be differentially 
impacted by sex and APOEε4 genotype will expand our 
knowledge about hippocampal neurogenesis as an endo-
phenotype of, and potential precision therapeutic target 
for, AD.

Inflammation in the brain is elevated with AD, and 
chronic activation of immune cells in the brain, such as 
microglia, plays a key role in the neurodegenerative cas-
cade in AD [46, 47]. Microglia contribute to the con-
struction and maintenance of neuronal networks in a 
healthy state, but can disrupt brain circuits and connec-
tivity in AD [48]. Inflammation also impacts neuronal 
loss and neurogenesis in the hippocampus [48–51]. In 
terms of differences with aging, there are more microglia 
in the dentate gyrus of aged (20–24 month) and middle-
aged (13 month) female rats compared to young adult 
female rats [52], and in the CA1 of aged (20–24 month 
old) female mice compared to both young (3–4 month 
old) female mice and aged male mice [53]. Single cell 
RNA sequencing data have further revealed greater sex 
differences in microglia from aged (22–25 month old) 
mice compared to young (5–6 month old) mice, and a 
stronger effect of aging on gene expression in female 
microglia compared to male microglia [54, 55]. Although 
beyond the scope of the present study, it is important to 
consider the contribution of declining or fluctuating lev-
els of steroid hormones across the lifespan to changes in 
inflammatory processes, including microglia levels and 
phenotype diversity [56]. It is becoming increasingly evi-
dent that the relationships and dynamics between inflam-
mation and other hallmarks of AD may differ across sex 
[57, 58]. There are relatively few studies investigating sex 
differences in inflammation in the context of AD to date, 
and the existing literature is mixed. For example, a study 
designed to understand the vascular and cognitive con-
tributions to AD found increased activation of microglia 
with a high fat diet in male, but not female, middle-aged 
mice [57]. Another study found increased markers of 
inflammation, including microglia, and amyloid pathol-
ogy in female compared to male 5XFAD 5-month old 
mice [59]. Although these findings seem equivocal, dif-
ferences in age, model, and diet of animals used in the 
studies influence these effects and need to be considered. 
Analyses using a large human database identified osteo-
porosis as a female-specific clinical predictor of AD, with 
shared relationships through the gene MS4A6A, which 
is involved in immune function, particularly among 
microglia [60].

The objective of this study was to characterize sex dif-
ferences in the influence of APOEε4 genotype on hip-
pocampal neurogenesis and microglia in middle-aged 

rodents. Progenitor cells, new-born immature neurons, 
and microglia in the dentate gyrus were quantified and 
morphological states of microglia were assessed to exam-
ine their putative inflammatory profile in the hippocam-
pus. We hypothesized that male and female rats will be 
distinctly impacted by APOEε4, displaying different neu-
rogenesis levels and inflammatory phenotypes.

Methods
Subjects
Twenty-six Sprague Dawley rats were evenly divided 
into 4 groups; male and female rats were either wildtype 
or expressed (humanized (h) APOEε4 (HsdSage: SD-
ApoEem1Sage rat, developed by SAGE Labs, Inc., Saint 
Louis, MO, USA). Males and females were housed in sep-
arate colony rooms that were maintained on a 12-hour 
light/dark cycle (lights on at 07:00  h) in standard labo-
ratory conditions (21 ± 1  °C; 50 ± 10% humidity). All rats 
were given ad libitum access to food (Purina Rat Chow) 
and water. All experiments were conducted in accor-
dance with ethical guidelines set by the Canada Council 
for Animal Care, and all procedures were approved by 
the University of British Columbia Animal Care Commit-
tee. All efforts were made to reduce the number and suf-
fering of animals.

Procedure and tissue collection
At middle age (13 months old), female rats were vaginally 
lavaged daily for 10 days until euthanasia. Lavage samples 
were transferred onto microscope slides, stained with 
Cresyl Violet, and left to dry. Lavage samples were quali-
tatively categorized as diestrus (consisting primarily of 
leukocyte-dense cells), proestrus (consisting primarily of 
nucleated epithelial cells), or estrus (consisting primarily 
of cornified cells), for evidence of irregular cycling, which 
was defined as consecutive lavage cycles varying in length 
and/or order. All rats were euthanized at 13 months old 
via lethal overdose of sodium pentobarbital. Brains were 
extracted and cut longitudinally into halves. The right 
hemispheres were flash frozen on dry ice and stored 
at − 80  °C, then sliced into 300  μm coronal sections at 
-10 °C using a cryostat (CM3050 S; Leica, Nuβloch, Ger-
many). Punches of 1.25  mm were used to extract tissue 
from cortex (within bregma − 3.30  mm to -3.80  mm, in 
the area directly above the hippocampus). The tissue was 
then homogenized using an Omni Bead Ruptor (Omni 
International, Kennesaw, GA) with 120  µl of cold Tris 
lysis buffer. Homogenates were centrifuged at 1000xg 
for 5 min at 4 °C and supernatants were stored at -80 °C 
for later analysis (Sect.  2.6.1 and 2.6.2). The left hemi-
spheres were post-fixed for 24 h in 4% paraformaldehyde 
(at 4  °C), then transferred to a 30% sucrose solution for 
cyroprotection until the brains sank. Using a freezing 
microtome (2M2000R; Leica, Richmond Hill, ON), the 
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left hemisphere of each brain was sliced into 35 μm coro-
nal sections and collected in series of 5 throughout the 
frontal cortex and in series of 10 throughout the entire 
rostral-caudal extent of the hippocampus. Sections were 
stored in a cryoprotective medium (consisting of 0.1  M 
PBS, 30% ethylene glycol, and 20% glycerol) at − 20 °C.

Amyloid-beta peptide electrochemiluminescence assay
Aβ42/Aβ40 ratio in the cortex was measured as an 
indicator of amyloid accumulation in the brain. This 
ratio was calculated as it is considered a more reliable 
marker of brain amyloid production and its downstream 
effects compared to Aβ42 or Aβ40 levels alone [61–63]. 
Amyloid-beta (Aβ) peptide concentrations in cortex 
homogenates were measured using a 3-plex electroche-
miluminescence immunoassay kit (V-PLEX Aβ Peptide 
Panel 1) from Meso Scale Discovery (Rockville, MD, 
USA) according to the manufacturer’s instructions. Sam-
ples were run in duplicates to quantify Aβ38, Aβ40, and 
Aβ42. Plates were read using a Sector Imager 2400 (Meso 
Scale Discovery), and data analyses were conducted 
using the Discovery Workbench 4.0 software (Meso Scale 
Discovery).

Immunohistochemistry
All immunohistochemical procedures were conducted 
on free-floating brain sections and on a rotator at room 
temperature unless otherwise noted. After staining, sec-
tions were mounted onto glass slides, allowed to dry, 
then dehydrated in increasing graded ethanol, defatted 
with xylene, and cover-slipped with Permount (Fisher 
Scientific).

Sry-box transcription factor 2
Sox2 is critical for maintaining pluripotency and is con-
sidered a marker of neural progenitor cells [64]. One 
series of hippocampal sections was stained for SRY-box 
transcription factor 2 (Sox2). Tissue was thoroughly 
rinsed (3 × 10  min) in 0.1  M tris-buffered saline (TBS; 
pH 7.4) before staining and between each of the follow-
ing procedures. Tissue was first treated with 3% hydro-
gen peroxide (H2O2 in dH2O) for 30 min, then blocked 
with TBS + solution containing 3% normal horse serum 
and 0.3% Triton-X in 0.1 M TBS for 30 min. Tissue was 
incubated in a primary antibody solution containing 
1:1000 mouse anti-Sox2 (Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) in TBS + for 48 h at 4 °C. Next, tis-
sue was incubated in a secondary solution containing 1:2 
ImmPRESS® (peroxidase) polymer horse anti-mouse IgG 
(rat absorbed) (Vector Laboratories) in TBS for 30 min. 
This ImmPRESS polymerized reporter enzyme staining 
system was used to enhance detection of mouse primary 
antibodies on rat tissues that may contain endoge-
nous rat immunoglobulins. Immunoreactants were 

visualized with a Nickel-enhanced DAB reaction (Vector 
Laboratories).

Doublecortin
One series of hippocampal sections was stained for 
doublecortin (DCX), a microtubule-associated protein 
expressed in new-born immature neurons [65]. Tissue 
was thoroughly rinsed (3 × 10 min) in 0.1 M phosphate-
buffered saline (PBS; pH 7.4) before staining and between 
each of the following procedures. Tissue was first treated 
with 0.6% hydrogen peroxide (H2O2 in dH2O) for 
30  min, then incubated in a primary antibody solution 
containing 1:1000 goat anti-doublecortin (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) in 3% normal rab-
bit serum and 0.4% Triton-X in 0.1  M PBS for 24  h at 
4 °C. Next, tissue was incubated in a secondary antibody 
solution containing 1:500 biotinylated rabbit anti-goat 
(Vector Laboratories, Burlington, ON, Canada) in 0.1 M 
PBS for 24 h at 4 °C. Lastly, tissue was transferred to an 
avidin–biotin complex (Elite kit; 1:1000, Vector Labora-
tories) for 4 h. Immunoreactants were visualized with a 
Nickel-enhanced DAB reaction (Vector Laboratories).

Ionized calcium-binding adaptor molecule 1
One series of hippocampal sections was stained for 
ionized calcium-binding adaptor molecule 1 (Iba1), a 
marker of microglia [66]. Tissue was thoroughly rinsed 
(3 × 10  min) in 0.1  M TBS (pH 7.4) before staining and 
between each of the following procedures. Tissue was 
treated with 3% hydrogen peroxide (H2O2 in dH2O) for 
30  min, then blocked with TBS + solution containing 
3% normal donkey serum and 0.3% Triton-X in 0.1  M 
TBS for 30 min. Tissue was incubated in a primary anti-
body solution containing 1:1000 rabbit anti-Iba1 (Wako, 
Osaka, Japan) in TBS + for 48 h at 4 °C. Next, tissue was 
incubated in a secondary antibody solution containing 
1:250 donkey anti-rabbit Alexa Fluor 594 (Vector Labo-
ratories) in TBS + for 4  h. Lastly, tissue was incubated 
in 1:1000 DAPI in TBS for 2.5 min, then mounted onto 
slides and cover-slipped with PVA DABCO.

Microscopy and cell quantification
Cell quantification was conducted while blinded to exper-
imental conditions of animals. Brain regions were defined 
according to a standard rat brain atlas [67]. Density of 
immunoreactive (IR) cells was calculated by dividing the 
total number of cells by area (µm2) of the corresponding 
region. The dorsal hippocampus was located in Sect. 7.20 
to 4.48  mm from the interaural line (Bregma − 1.80 to 
-4.52  mm and the ventral hippocampus was located in 
Sect.  4.48 to 2.20  mm from the interaural line (Bregma 
− 4.52 to -6.80  mm). As these subregions of the hippo-
campus possess different functional capabilities [68] and 
exhibit different timelines of neuronal maturation [45], 
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cells were quantified from 2 sections of dorsal dentate 
gyrus and 2 sections of ventral dentate gyrus. Sections 
stained for Sox2 were imaged using the Zeiss Axio Scan.
Z1 (Carl Zeiss Microscopy, Thornwood, NY, USA) with a 
20x objective lens and brightfield imaging. Sox2-immu-
noreactive (IR) cells in the granule cell layer of the den-
tate gyrus were counted using a MATLAB (MathWorks) 
code developed by JEJS and modified by NT as described 
in Yagi et al. (2020). This code can be made available by 
contacting the corresponding author. Briefly, images 
were converted to 8-bit, binarized, and thresholded. Size 
restrictions were applied to remove artifacts that are too 
large (bigger than 500 pixels) or too small (smaller than 
10 pixels) to be a cell. The number of times the back-
ground is removed from the image is adjusted and opti-
mized for the stain.

Sections stained for DCX were viewed under a 100x 
objective on an Olympus CX22LED brightfield micro-
scope, and DCX-IR cells in the granule cell layer of the 
dentate gyrus were exhaustively counted. Area measures 
of the regions of interest were obtained using images 
acquired with the Zeiss Axio Scan.Z1 (Carl Zeiss Micros-
copy, Thornwood, NY, USA) with a 10x objective lens 
and brightfield imaging.

Sections stained for Iba1 were imaged with Zeiss Axio 
Scan 7 (Carl Zeiss Microscopy, Thornwood, NY, USA) 
with a 40x objective lens using fluorescent light. Iba1-IR 
cells were counted from images of 2 sections each from 
the dorsal and ventral dentate gyrus using ImageJ. As 
microglia assume different morphological phenotypes in 
response to surrounding conditions, a random sampling 
of Iba1-IR cells were categorized by morphology [69, 
70]. A macro on ImageJ was run to randomly select 20 
Iba1-IR cells within the region of interest, defined from 
two sections each of dorsal and ventral dentate gyrus. 
Each Iba1-IR cell was then manually classified as ramified 
(long, highly branched processes to survey the environ-
ment under homeostatic conditions), stout (fewer and 
shorter processes), or ameboid (enlarged and rounded 
cell body, no processes, typically seen under inflamma-
tory conditions).

Statistical analyses
Analyses were conducted using Statistica (Statsoft Tulsa, 
OK). Repeated measures analysis of variance (ANOVA) 
were used on dependent variables of interest with geno-
type (wildtype, hAPOEε4) and sex (male, female) as 
between-subjects variables and region (dorsal dentate 
gyrus, ventral dentate gyrus) as within-subjects variables. 
Post-hoc tests used Newman-Keuls and any a priori com-
parisons to examine sex by genotype interactions were 
subjected to Bonferroni correction. A Chi-square test 
was used to compare the frequency of rats that displayed 
irregular estrous cycling and constant estrous cycling. 

Estrous cycle phase was used as a covariate in all analyses 
but did not change any outcomes.

Results
Wildtype males had a higher density of Sox2-IR cells in the 
dentate gyrus compared to hAPOEε4 males and wildtype 
females
Sox2-IR cells were quantified to examine potential dif-
ferences in the density of neural progenitor cells in the 
dentate gyrus. Wildtype males had a higher density of 
Sox2-IR cells in the dentate gyrus compared to all other 
groups (hAPOEε4 males (p = 0.050, Cohen’s d = 1.278; 
wildtype females (p = 0.029, Cohen’s d = 1.499; hAPOEε4 
females (p = 0.055, Cohen’s d = 1.240; sex by genotype 
interaction: F [1, 21] = 4.240, p = 0.050, partial η2 = 0.168; 
Fig.  1), but there was no statistical difference between 
wildtype and hAPOEε4 females (p = 0.701, Cohen’s 
d = 0.343). There was a higher density of Sox2-IR cells 
in the ventral dentate gyrus (1430.924 ± 79.477) than 
the dorsal dentate gyrus (1178.724 ± 43.156; main effect 
of region: F [1, 19] = 12.104, p = 0.002, partial η2 = 0.366; 
Fig.  1), but no other significant main effects or interac-
tions (all p’s > 0.08).

Wildtype males had a higher density of DCX-IR cells in the 
dentate gyrus than hAPOEε4 males, whereas the opposite 
pattern was seen in females
DCX-IR cells were quantified to examine potential dif-
ferences in the density of new-born immature neurons in 
the dentate gyrus. Wildtype males had a higher density of 
DCX-IR cells in the dentate gyrus compared to hAPOEε4 
males (p = 0.007, Cohen’s d = 2.236) and compared to 
wildtype females (p = 0.013, Cohen’s d = 1.530; sex by 
genotype interaction F [1, 22] = 19.831, p < 0.001, partial 
η2 = 0.474; Fig. 2). However, an opposing pattern was seen 
in females, as wildtype females had a lower density of 
DCX-IR cells than hAPOEε4 females (p = 0.022, Cohen’s 
d = 1.453; Fig.  2). hAPOEε4 female rats also had greater 
density of DCX-IR cells than hAPOEε4 males (p = 0.008, 
Cohen’s d = 2.328; Fig. 2). There were no other significant 
main effects or interactions (all p’s > 0.189).

hAPOEε4 rats had a greater density of Iba1-IR cells in the 
dentate gyrus than wildtype rats. Female rats had a greater 
density of Iba1-IR cells in the dentate gyrus than male rats
Iba1-IR cells were quantified to examine potential dif-
ferences in the density of microglia in the dentate gyrus. 
hAPOEε4 rats had a higher density of Iba1-IR cells, 
regardless of region compared to wildtype rats (main 
effect of genotype: F [1, 22] = 6.898, p = 0.015, partial 
η2 = 0.015; Fig.  3). There was also a main effect of sex 
such that females had a higher density of Iba1-IR cells 
compared to males (F [1, 22] = 4.223, p = 0.050, partial 
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η2 = 0.161; Fig.  3). There were no other significant main 
effects or interactions (all p’s > 0.228).

There was a greater proportion of ramified Iba1-IR cells in 
the dorsal dentate gyrus than the ventral dentate gyrus
To assess potential differences in microglia morpho-
logical profiles, Iba1-IR cells in the dentate gyrus were 
classified as ameboid, stout, or ramified. There was a 
greater proportion of ramified Iba1-IR cells in the dor-
sal dentate gyrus compared to the ventral dentate gyrus 
(p = 0.014, Cohen’s d = 38.462; region by morphology type 

interaction: F [2, 44] = 4.254, p = 0.020, partial η2 = 0.162; 
Fig. 4). There was a main effect of type such that a greater 
proportion of Iba1-IR cells were ramified compared to 
ameboid or stout (main effect of type: F [2, 44] = 34.468, 
p < 0.001, partial η2 = 0.610; Fig.  4), but no other signifi-
cant main effects or interactions (all p’s > 0.054).

Fig. 2 (A) Average density of DCX-IR cells ± standard error of the mean in the dentate gyrus. hAPOEε4 males had a lower density of DCX-IR cells than 
wildtype males, whereas hAPOEε4 females had a greater density of DCX-IR cells than wildtype females. (B) Photomicrograph of DCX-IR cells. * indicates 
p < 0.05. DCX– doublecortin, DG– dentate gyrus, hAPOEε4– humanized APOEε4

 

Fig. 1 (A) Average density of Sox2-IR cells ± standard error of the mean in the dentate gyrus. Wildtype males had a greater density of Sox2-IR cells than all 
other groups in the dentate gyrus. There was a greater density of Sox2-IR cells in the ventral dentate gyrus than the dorsal dentate gyrus. (B) Photomicro-
graph of Sox2-IR cells. * indicates p < 0.05. Sox2– SRY-box transcription factor 2, DG– dentate gyrus, hAPOEε4– humanized APOEε4
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In male rats only, there was a significant positive 
correlation between density of Sox2-IR cells and DCX-IR 
cells and a significant negative correlation between 
density of DCX-IR cells and Iba1-IR cells in the dentate 
gyrus
Pearson product-moment correlations were calculated 
between markers of neurogenesis and microglia. There 
was a significant positive correlation between density 
of Sox2-IR cells and density of DCX-IR cells in male (r 
[13] = 0.705, p = 0.007), but not female, rats (r [12] = 0.345, 
p = 0.273; Fig.  5). There was also a significant negative 
correlation between density of DCX-IR cells and density 
of Iba1-IR cells in male (r [13]=-0.607, p = 0.028), but not 
female, rats (r [13]=-0.394, p = 0.183; Fig. 5).

Female APOEε4 rats had greater Aβ42/Aβ40 than female 
wildtype rats. Female rats had greater Aβ42/Aβ40 than 
male rats
Ratio of Aβ42 to Aβ40 in the cortex was calculated to 
examine potential effects of APOEε4 genotype and sex on 
amyloid pathology. Planned comparisons revealed that 
female APOEε4 rats had higher Aβ42/Aβ40 compared 
to female wildtype rats (one-tailed p = 0.0451, Cohen’s 
d = 0.761; sex by genotype interaction: F [1, 20] = 0.619, 
p = 0.440, partial η2 = 0.030; Fig. 6). There was also a main 
effect of sex such that female rats had higher Aβ42/Aβ40 
compared to male rats (F [1, 20] = 12.296, p = 0.002, par-
tial η2 = 0.381; Fig. 6).

Fig. 4 Total proportions of ameboid, stout, and ramified Iba1-IR cells ± standard error of the mean in the (A) dorsal and (B) ventral dentate gyrus. (C) Total 
proportions of ameboid, stout, and ramified Iba1-IR cells ± standard error of the mean in the dentate gyrus. There were more ramified than ameboid or 
stout Iba1-IR cells in the dentate gyrus, regardless of region. There were more ramified Iba1-IR cells in the dorsal dentate gyrus than the ventral dentate 
gyrus. * indicates p < 0.05. Iba1– ionized calcium-binding adaptor molecule 1, DG– dentate gyrus, hAPOEε4– humanized APOEε4

 

Fig. 3 Average density of Iba1-IR cells ± standard error of the mean in the dentate gyrus. hAPOEε4 rats had a higher density of Iba1-IR cells than wildtype 
rats. Female rats had a higher density of Iba1-IR cells in the dentate gyrus than male rats. (B) Photomicrograph of Iba1-IR cells. * indicates p < 0.05. Iba1– 
ionized calcium-binding adaptor molecule 1, DG– dentate gyrus, hAPOEε4– humanized APOEε4

 



Page 8 of 14Lee et al. Biology of Sex Differences           (2025) 16:10 

Estrous cycling of female rats did not alter any findings
Of the female rats in this study, 77% displayed a constant 
estrous stage and the remaining 23% displayed irregular 
estrous cycling. There were no genotype differences in 
proportion of rats displaying constant estrous stage or 
irregular estrous cycling (p = 0.416). Using estrous cycling 
(classified as irregular or in constant estrus) as a covari-
ate did not alter any findings, nor was there a significant 
effect of the covariate (all p’s > 0.142).

Discussion
The findings of the present study demonstrate striking 
sex differences in hippocampal neurogenesis at middle 
age that are dependent on hAPOEε4 genotype. Spe-
cifically, hAPOEε4 males exhibited fewer neural pro-
genitor cells and fewer new-born neurons compared to 
wildtype males. On the other hand, hAPOEε4 females 
showed no changes in density of neural progenitor cells 
and more new-born neurons compared to wildtype 
females. hAPOEε4 rats had elevated levels of microglia 
than wildtype rats and females, regardless of genotype, 
had elevated levels of microglia compared to males. Sig-
nificant relationships between neurogenesis and neural 
progenitor cells or microglia were present in male, but 
not female, rats. Together, these findings highlight sex 
differences in signatures relating to neurogenesis and 
microglia in a model of AD risk, underscoring the need 
to develop and apply sex-specific approaches within AD 
research and treatment development.

hAPOEε4 genotype reduced the density of neural 
progenitor cells in males but not females
Perhaps as expected, given the increased risk for AD 
with APOEε4 genotype, hAPOEε4 male rats had fewer 
neural progenitor cells (Sox2-IR) in the dentate gyrus 
relative to wildtype rats. However, the same pattern was 
not detected in female rats, as there were no significant 
effects of genotype on neural progenitor cells in the den-
tate gyrus in females. In individuals with AD, Sox2 is 
decreased in the brain and there is functional crosstalk 
between Sox2 and proteins involved in AD [71]. Thus, 
neural stem or progenitor cell density may be a protec-
tive factor for AD. Indeed, a meta-analysis indicated that 
neural stem cell therapy improved cognition and reduced 
levels of neuropathology in preclinical AD models [72]. 
However, 80% of the 30 studies included in the meta-
analysis were either exclusively performed in males or 
did not report the sex of animals used, and only 3 studies 
examined females alone [72]. Our findings have implica-
tions for sex differences in treatment efficacy of neural 
progenitor cell therapy for AD– at least for those with 
APOEε4 genotype– as the compromised density of neu-
ral progenitor cells in the dentate gyrus was only seen in 
hAPOE4 males and not females.

We also found that wildtype male rats had a greater 
density of neural progenitor cells than wildtype female 
rats at middle age. This aligns with previous work show-
ing greater density of Sox2-IR cells in the dorsal dentate 
gyrus of male compared with female two-month-old 
rats [45]. It is interesting to note that Yagi et al. (2020) 
only found this sex difference in the dorsal dentate gyrus, 
whereas the present study found this sex difference in 
both the dorsal and ventral dentate gyrus. This could be 

Fig. 5 Scatterplots of correlations between (A) Sox2-IR and DCX-IR cell density and (B) Iba1-IR and DCX-IR cell density in male and female rats. There was 
a significant positive correlation between Sox2-IR and DCX-IR cell density and a significant negative correlation between Iba1-IR and DCX-IR cell den-
sity in male rats only. Sox2– SRY-box transcription factor 2, DCX– doublecortin, Iba1– ionized calcium-binding adaptor molecule 1, DG– dentate gyrus, 
hAPOEε4– humanized APOEε4
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attributed to the age difference in animals used in the 
studies, as age might modulate the effects of sex on den-
sity of neural progenitor cells in the dentate gyrus.

hAPOEε4 genotype decreased neurogenesis in males, but 
increased neurogenesis in females
In line with the neural progenitor cell data (Sect.  3.1), 
we found that male hAPOEε4 rats also exhibited fewer 
new-born neurons compared to wildtype rats. In con-
trast, female hAPOEε4 rats exhibited more new-born 
neurons in the dentate gyrus than wildtype rats. This 
reduction, in both neural progenitor cells and new-born 
immature neurons, observed in males with hAPOEε4 
genotype suggests that hAPOEε4 reduces neuroplasticity 
in the hippocampus by disrupting both the neural pro-
genitor pool and generation of new-born neurons. This 
finding is consistent with research showing lower levels 
of neurogenesis in humans with AD compared to healthy 

controls [36, 40] as well as in various animal models of 
AD [73–76]. Both male and female 3xTg-AD mice show 
greater reduction in neurogenesis compared to con-
trols, although female mice showed an earlier reduction 
at 4 months old and male mice showed the reduction at 
9 months old [75]. However, it is important to consider 
the contribution of the various gene mutations involved 
in such transgenic animal models when interpreting find-
ings and comparing across studies. Here, we focused on 
characterizing the effects of hAPOEε4 as it is the great-
est known genetic risk factor for late-onset AD [7]. The 
present study starkly demonstrates that the effects of 
hAPOEε4 genotype on neurogenesis is very different in 
females. The increase in neurogenesis with hAPOEε4 
genotype may be a compensatory mechanism in females 
at early stages of disease. This idea is supported by other 
studies– one conducted in female mice and three that did 
not detail sex of animals used or analyses by sex– that 

Fig. 6 Mean Aβ42 to Aβ40 ratio in the cortex. Female APOEε4 rats showed a higher ratio, which indicates greater amyloid pathology, compared to female 
wildtype rats. Female rats also showed a higher ratio compared to male rats. Aβ– amyloid beta, hAPOEε4– humanized APOEε4
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similarly showed increased hippocampal neuroplasti-
city and neurogenesis in early AD [42, 43, 77, 78]. It is 
important to note that despite an increase in neurogen-
esis, the newly generated neurons may not fully mature 
or may not develop into the right type of neurons that 
functionally contribute to circuitry as expected. Indeed, 
a study examining middle-aged female rats similarly 
found increased levels of neurogenesis in the hippocam-
pus of hAPOEε4 rats compared to wildtype rats. Despite 
this, hAPOEε4 rats made more spatial working memory 
errors than wildtype rats, but no significant differences in 
activation of new-born neurons in response to memory 
retrieval between hAPOEε4 and wildtype female rats, 
suggesting the new-born neurons did not necessarily 
contribute to enhancing spatial working memory perfor-
mance [79]. Future experiments should explore the sur-
vival and integration new-born neurons as well as how 
activity of new-born neurons might correlate with neural 
activity in other brain regions to explore changes with sex 
and hAPOEε4 at middle age on a network level. Nonethe-
less, the findings in females showing a “protective” effect 
on neuroplasticity in the hippocampus are reflected in 
human data, as human females, but not human males, 
had greater hippocampal integrity even in the face of 
amyloid pathology in midlife [80]. These results indi-
cate that females may have a hippocampal reserve that is 
more resilient against early stages of the disease. In sum, 
the contrasting effects of hAPOEε4 on neural progenitor 
cells and new-born neurons in males and females in the 
present study suggest sex-specific responses to the pres-
ence of this AD risk factor, highlighting a key consider-
ation for future research.

In wildtype rats, males had greater density of new-born 
neurons than females. This is in line with other studies 
reporting higher levels of cell proliferation in young adult 
male rats compared to female rats [45, 81]. It is possible 
that females have faster turnover of progenitor cells to 
proliferating cells, given the lack of change in progeni-
tor cell density but increase in new-born neuron density. 
It is also possible that females have enhanced matura-
tion of new-born neurons, however a previous study 
in younger rats found the opposite finding [45]. Future 
experiments to supplement these findings and elucidate 
sex differences in the trajectory of neurogenesis should 
use additional markers, including exogenous markers, to 
assess additional stages of neurogenesis. In addition, sex 
hormones can differentially modulate hippocampal neu-
rogenesis in males and females, and age-related changes 
to steroid hormone levels and hormone receptor levels 
and reactivity in males and females can influence hip-
pocampal neurogenesis in age-specific ways [82–84]. In 
the present study, we found that majority of female rats 
displayed a constant estrous stage, with the rest display-
ing irregular estrous cycling. This is in line with other 

research showing increased irregular estrous cycling 
with increased age in rats [52, 85]. Notably, irregularities 
in estrous cycle length followed by acyclicity are typi-
cal patterns of aging in rodents, leading up to cessation 
of hormone cycling and thus reproductive senescence 
[86, 87]. Although estrous cycle staging did not appear 
to influence our findings in the present study, it will be 
important for future research to more thoroughly assess 
whether changes to estrous cycling and steroid hormone 
levels might influence other biomarkers of neuroplasti-
city, as well as characterize these relationships at addi-
tional time points along the aging trajectory.

hAPOEε4 genotype increased the density of microglia. 
Female rats had greater density of microglia compared to 
male rats
The present study found that hAPOEε4 genotype 
increased the density of microglia in the dentate gyrus, 
regardless of sex. This finding is somewhat inconsistent 
with research using a mouse model of vascular contri-
butions to cognitive impairment and dementia, which 
reported increased activation of hippocampal microglia 
in male, but not female, middle-aged mice with a high 
fat diet [57]. However, the increase in microglia density 
in the present study was stronger in males (p = 0.008, 
Cohen’s d = 2.441) than in females (p = 0.151, Cohen’s 
d = 0.647; sex by genotype interaction: F [1, 22] = 0.717, 
p = 0.406, partial η2 = 0.032). This indicates differential 
pathways for AD risk depending on sex, and potentially 
that females may be exhibiting a compensatory response 
to hAPOEε4 genotype at middle age.

Females had more microglia in the dentate gyrus 
compared to males. Recent studies have shown sex dif-
ferences in microglia and their involvement in AD path-
ways [58, 60, 88]. A large-scale meta-analysis of DNA 
methylation differences revealed sex-specific biological 
processes that affected AD neuropathology, including 
integrin activation and macrophage migration in females 
and complement activation in males [88]. Importantly, 
Zhang et al. demonstrate that many genes and biologi-
cal processes previously implicated in AD neuropathol-
ogy are predominantly driven by effects in only one sex, 
underscoring different regulatory mechanisms involved 
in AD neuropathology in males and females [88]. Our 
findings add to this literature and provide a foundation 
for future research to explore other inflammatory signa-
tures including cytokines and the complement system.

Microglia assume diverse morphological characteris-
tics in response to various stimuli. Generally, microglia 
exhibit a ramified morphology when surveilling their sur-
roundings, including neighbouring neurons and other 
cells, whereas a transition towards an ameboid morphol-
ogy signals a shift in microglial activation, often with 
increased phagocytic and migratory capacity [69]. In 
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the present study, there were more ramified microglia in 
the dorsal dentate gyrus than the ventral dentate gyrus, 
and there were more ramified microglia than ameboid 
or stout microglia overall. This suggests that the activa-
tion and phagocytic potential of microglia might differ 
across subregions of the dentate gyrus. However, there 
were no significant effects of sex or genotype on the 
number of ameboid, stout, or ramified microglia in the 
dentate gyrus. This finding is perhaps unexpected, given 
that age-related changes in inflammatory and comple-
ment gene expression in the hippocampus occur earlier 
and to a larger extent in females compared to males [89]. 
Moreover, one study using a microglial transcript isola-
tion approach identified a central APOE-driven network 
and found that shared microglial transcripts with this 
APOE network were exacerbated in females [90]. It is 
note-worthy that majority of sex differences reported in 
this study was in 24-month-old mice, despite also exam-
ining 3- and 12-month old mice. As such, we hypothesize 
that a more in-depth analysis of the different features 
related to microglial morphology and assessments at 
additional ages may further reveal insights to potential 
contributions of sex or hAPOEε4 genotype on microglia 
morphology.

In male rats only, a greater density of new-born neurons 
was associated with a greater density of neural progenitor 
cells and a smaller density of microglia
We found a significant positive correlation between den-
sity of neural progenitor cells and density of new-born 
neurons in the dentate gyrus in males. We also found 
a significant negative correlation between density of 
new-born neurons and microglia in the dentate gyrus 
in males. These relationships were not seen in females, 
implicating that shifts in neurogenesis and microglia lev-
els occur in tandem specifically in male, but not female, 
rats across both wildtype and hAPOEε4 groups. These 
findings emphasize the need for more research on how 
neurogenesis and inflammation interact in a sex-specific 
manner within AD risk models. As our current under-
standing about relationships between neurogenesis, 
inflammation, and AD are largely derived from male-only 
studies or research that has overlooked the influences 
of sex, addressing this gap is crucial for expanding our 
knowledge about AD and, ultimately, developing effective 
and tailored treatment options.

Female hAPOEε4 rats showed greater amyloid pathology 
compared to female wildtype rats
We found that in females, hAPOEε4 rats had greater 
amyloid burden in the cortex, quantified as Aβ42/Aβ40, 
compared to wildtype rats. This is consistent with previ-
ous work in female rats that found increased Aβ42/Aβ40 
as well as more errors in a spatial working memory task 

with hAPOEε4 genotype at middle age [79]. In the pres-
ent study, we also found that females had greater amyloid 
burden compared to males. Interestingly, there were no 
genotype differences within male rats, suggesting that 
changes in neuroplasticity in the brain precedes amyloid-
related pathology accumulation in male hAPOEε4 rats, 
and emphasizes there are sex differences in the effects of 
hAPOEε4 on biomarkers of brain health in middle-aged 
rats. Indeed, work by Caldwell et al. (2017) shows that 
despite greater amyloid burden in human females, hip-
pocampal integrity remained remarkably intact, which 
is in line with what the present study shows in female 
rats [80]. Together, this underscores the importance of 
recognizing that pathways in aging and disease progres-
sion may not be similar across sexes. It will be interesting 
for future studies to characterize additional biomarkers 
related to AD pathology in males and females and under-
stand the time course of each. Furthermore, it is impor-
tant to acknowledge that the right hemisphere was used 
for the amyloid chemiluminescence assay whereas the 
left hemisphere was used for immunohistochemistry, and 
hemispheres were not counterbalanced. This was done to 
ensure consistency and control for any potential effects 
of laterality, although future studies should investigate 
whether there are any hemispheric differences in neuro-
plasticity and amyloid pathology.

Perspectives and significance
Understanding the role of neuroplasticity in the onset 
and progression of AD is crucial to elucidating specific 
cellular contributions to the complex and multifaceted 
makeup of the disease. The present research revealed 
that hAPOEε4 genotype altered hippocampal neuroplas-
ticity in male middle-aged rats in a manner that align 
with the “typical” effects hypothesized to be related to 
AD as reported in the literature. Importantly, these pat-
terns may reflect the long-standing male bias embedded 
within research frameworks. Indeed, this study highlights 
biomarkers that are altered with hAPOEε4 in starkly 
different ways between males and females, which could 
indicate divergent downstream processes or even distinct 
mechanisms and timing of adaptation to AD risk in mid-
dle-aged male and female rats. Our findings align with 
work in humans that indicate females show more integ-
rity in the face of greater amyloid pathology, specifically 
in the hippocampus, compared to males. Collectively, the 
findings of this work emphasize the need to rigorously 
consider and investigate sex as a critical factor in influ-
encing aging and neurodegenerative disease pathways.

Conclusion
Here, we found that hAPOEε4 genotype had opposing 
effects on hippocampal neurogenesis and inflamma-
tion depending on sex at middle age. Considering that 
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presence of APOE ε4 alleles and female sex are top non-
modifiable risk factors for AD, it is critical to understand 
how the interplay between these two factors might con-
tribute to brain health. The present study showed that 
males hAPOEε4 rats exhibited lower density of neural 
progenitor cells and new-born neurons, as well as greater 
density of microglia, compared to male wildtype rats. In 
contrast, female hAPOEε4 rats exhibited greater density 
of new-born neurons, with minimal changes to neural 
progenitor cells and microglia, compared to female wild-
type rats. Regardless of genotype, female rats had greater 
density of microglia compared to male rats. Future 
work should expand our understanding of how sex and 
hAPOEε4 genotype impact brain health by exploring 
additional stages of neurogenesis, along with a broader 
range of neuroplasticity and inflammatory biomarkers. 
Put together, our findings underscore the need to reas-
sess existing knowledge about hippocampal neurogen-
esis and inflammation, and more broadly, brain health, in 
the context of AD, as it is largely based on studies using 
human males or male animal models. Accounting for 
influences of sex on the various endophenotypes of AD in 
future work will be key to informing targeted and effec-
tive treatments.
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