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Abstract 

Background Sexual maturation in Atlantic salmon entails a transition in energy utilization, regulated by genes 
and environmental stimuli in sex‑specific manner. Males require less energy, in the form of adiposity, to mature 
and typically mature younger than females. Maturation age is also influenced in a sex‑dependent fashion by the vgll3 
genotype (vestigial-like 3), a co‑factor in the Hippo pathway. The underlying molecular processes of sex‑dependent 
maturation age, and their interplay with adiposity and vgll3 genotypes, remain unclear.

Methods To elucidate the mechanisms underlying sex‑ and genotype‑specific maturation differences, we investi‑
gated the association of early (E) and late (L) maturation vgll3 alleles with the transcription of > 330 genes involved 
in the regulation of the Hippo pathway and sexual maturation, and related molecular signals in brain, adipose, 
and gonads.

Results The strongest effect of vgll3 genotype was observed in adipose for females and in brain for males, high‑
lighting sex‑specific expression differences in association with vgll3 genotype. Genes related to ovarian develop‑
ment showed increased expression in vgll3*EE compared to vgll3*LL females. Moreover, vgll3*EE females compared 
to vgll3*EE males exhibited reduced markers of pre‑adipocyte differentiation and lipolysis yet enhanced expression 
of genes related to adipocyte maturation and lipid storage. Brain gene expression further showed sex‑specific expres‑
sion signals for genes related to hormones and lipids, as well as tight junction assembly.

Conclusions Overall, these sex‑specific patterns point towards a greater lipid storage and slower energy utilization 
in females compared to males. These results suggest Hippo‑dependent mechanisms may be important mediators 
of sex differences in maturation age in salmon.

Keywords Gene co‑expression, Atlantic salmon, vgll3, Hippo pathway, Sex‑specific differences, Sexual maturation, 
Adipogenesis, Lipid storage, Age at maturity
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Background
The timing of sexual maturation can have dramatic effects 
on survival and reproductive success [1] and is influenced 
by environmental cues and genetic mechanisms [2]. 
Optimizing maturation timing is vital in aquaculture of 
species like Atlantic salmon, as it directly affects growth, 
flesh quality, and production efficiency, making it key to 
sustainable farming [2]. Maturation age often exhibits 
sex-specific differences within species [3, 4]. In Atlantic 
salmon, sexual maturation is linked with seasonal envi-
ronmental changes with differences between sexes [1]. 
Lipid allocation variation also plays a role in determining 
maturation age, as individuals must accumulate sufficient 
energy reserves to initiate maturation [5–7]. Genetic fac-
tors, notably the vestigial-like family member 3 (vgll3) 
gene, serve as major determinants of maturation age with 
sex-specific effects in this species [8–10]. Vgll3 influences 
maturation timing in males as early as < 1 year of age in 
controlled conditions [11–13]. Interestingly, associations 
with similar traits (pubertal timing, pubertal growth 
spurt) have been detected with the human ortholog 
(VGLL3) [14–16] and VGLL3 has also been identified as 
a promoter of sex-biased autoimmune diseases [17].

Previous molecular studies of vgll3 in Atlantic salmon 
have primarily focused on males for practical reasons 
such as the convenience of some males maturing as 
early as < 1 year of age [13, 18–23], whereas females usu-
ally take 3 or more years to mature [24]. Therefore, the 
underlying molecular processes of sex-specific matura-
tion patterns have remained largely unexplored. Recent 
gene co-expression network analyses have indicated that 
the effects of vgll3 genotypes in males on genes playing a 
role in the reproductive axis, adipogenesis and neurogen-
esis are exerted through the modulation of various com-
ponents of the Hippo signaling pathway [22, 23, 25]. The 
Hippo pathway is known for its role in biological func-
tions such as controlling organ size in vertebrates [19, 
26, 27], regulating adipocyte proliferation and differen-
tiation [28, 29] and high fat diet -induced neural differ-
entiation [30]. In mammals, for instance, YAP1, a major 
transcription co-factor of the Hippo pathway, is required 
for adipogenesis [28], whereas VGLL3 functions as an 
inhibitor of adipogenesis [29], indicating the significance 
of this pathway in energy acquisition processes. VGLL3 is 
thought to compete with YAP1, which acts as an inhibi-
tor of the Hippo pathway [19, 31]. Moreover, the Hippo 
pathway has been implicated in responding to environ-
mental cues, such as changes in diet fat and temperature, 
at the transcriptional level [32–34]. Atlantic salmon is 
an interesting natural model system for investigating the 
molecular mechanisms that directly link sexual matu-
ration, energy acquisition, and environmental changes 
given that vgll3 serves as a major activating transcription 

co-factor of the Hippo pathway, its tight linkage to matu-
ration and adipogenesis processes [23].

A growing body of evidence highlights the involvement 
of the Hippo pathway in various sex-dependent biological 
processes across vertebrates, such as size dimorphism in 
fish and reptiles [35, 36], innate immunity [37, 38], adre-
nal gland development in mammals [39], and gonadal 
development and maintenance in fish [40]. Of particular 
interest among the components of the Hippo pathway is 
VGLL3, which has been identified as a key regulator of 
sex-biased autoimmune responses in humans [41]. Here, 
VGLL3 influences a network of genes involved in various 
metabolic, developmental, and reproductive functions 
[41]. This leads to hypotheses about its potential evolu-
tionary significance in maintaining sex-specific metabolic 
homeostasis under metabolic stress, with implications 
for autoimmune-related pathological conditions [42]. 
However, the molecular details of such sex-dependent 
roles for VGLL3 in regulating sexual maturation have 
not extensively been explored in any vertebrate species. 
Therefore, the early and late alleles of vgll3 in Atlantic 
salmon present a unique opportunity to investigate this 
aspect in greater depth.

In this study, we employed a custom-made NanoString 
gene expression panel to analyze the expression patterns 
of 333 genes, encompassing components of the Hippo 
pathway and their associated interacting partners, in 
the brain, ovary, and adipose tissue of immature female 
Atlantic salmon with homozygous early or late vgll3 gen-
otypes. We compared the patterns of gene expression in 
females to previously published data in respective male 
tissues collected at a seasonal stage coinciding with the 
onset of sexual maturation in males carrying the vgll3*EE 
genotype [23]. By doing so, we provide deeper insights 
into the vgll3-dependent molecular processes underlying 
its sex-dependent effects on sexual maturation.

Materials and methods
Fish material and tissue sampling
Individuals used in this study include eight males at the 
immature-2 stage reported in Ahi et al. (2024a, b) as well 
as eight females reared in the same tanks as these males. 
Details of the rearing and male sampling can be found 
in Verta et al. (2020) and Ahi et al. (2024b), respectively. 
Briefly, individuals from the same population (Oulujoki) 
and cohort used in Verta et  al. (2020) provided access 
to individuals with known vgll3 genotypes (see Verta 
et  al. 2020 for details on crossing and rearing). Imma-
ture females reared in the same tanks were sampled at 
1.5  years post-fertilization. Following euthanization by 
anesthetic overdose of MS222, various tissues, including 
visceral adipose tissue, brain, and ovary, were collected 
from the females during the summer (July 4–17). This 
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time point was chosen as it represents a late immature 
stage, where molecular signals of maturation initiation 
may begin to emerge in some males, but no visible phe-
notypic signs of maturation are present in either sex. To 
avoid inconsistencies, the males included in this study 
had GSI values predominantly near 0 for both genotypes. 
Specifically, in vgll3*EE males, two individuals had a GSI 
of 0.01 and two had 0.111 and 0.13, while in vgll3*LL 
males, three had 0.01 and one had 0.13. Although GSI 
values for this stage can generally range up to 0.2 for 
males, individuals analyzed in this study were selected 
within the lower end of this range, ensuring they all 
retained an immature phenotype. However, it is impor-
tant to note that while the GSI value can serve as a reli-
able indicator of maturation stage in Atlantic salmon [43, 
44], a low GSI does not necessarily mean that immature 
males have not entered the onset of puberty. Even at an 
immature stage with a low GSI, males may have already 
initiated the molecular and cellular processes of puberty, 
which may not yet be externally visible. The female indi-
viduals had an average mass of 41.3 g (range 30.1–68.8 g) 
and an average length of 19.4 cm (range 15.0–20.3 cm), 
while the males had an average mass of 33.7  g (range 
21.1–76.6  g) and an average length of 17.3  cm (range 
14.0–18.5  cm). All females had GSI values below 0.12, 
confirming their immature status.

RNA extraction and the NanoString nCounter mRNA 
expression panel
In total, RNA was extracted from 24 tissue samples from 
8 immature females: 8 samples each of visceral adipose 
tissue, brain, and ovary. RNA extraction was performed 
using a NucleoSpin RNA kit (Macherey-Nagel GmbH 
& Co. KG) as reported in Ahi et al. (2024b), and female 
samples were randomized among the male samples from 
Ahi et  al. (2024a, b) used in this study. RNA extrac-
tion followed the manufacturer’s instructions, includ-
ing a built-in DNase step to remove residual gDNA. The 
extracted RNA from each sample was eluted in 50 µl (adi-
pose and brain) and 80 µl (ovary) of nuclease-free water. 
RNA quantity was measured with a NanoDrop ND-1000 
(Thermo Scientific, Wilmington, DE, USA), and quality 
was assessed with a 2100 BioAnalyzer system (Agilent 
Technologies, Santa Clara, CA, USA). The RNA integrity 
number (RIN) was > 7 for all samples. For each extrac-
tion, 100 ng of total RNA was used for the hybridization 
step in the NanoString panel.

NanoString nCounter is a multiplex nucleic acid 
hybridization technology that enables assessment of 
RNA expression of several hundred genes simultaneously 
[45]. As it requires only small RNA amounts with lower 
quality than RNA-Seq, lacks an amplification step, and 
detects very low RNA expression levels, it is particularly 

attractive for ecological and evolutionary research [19, 
23, 46, 47]. The NanoString panel used here extends the 
panel used in Kurko et  al. (2020) by adding more than 
140 genes for a total of 337 genes. This panel includes an 
extensive list of Hippo pathway components and inter-
acting partners [19]. The panel also included probes for 
age-at-maturity-associated genes in Atlantic salmon: 
vgll3a and six6a (on chromosome 25 and 9, respectively) 
and their paralogs vgll3b and six6b (on chromosome 21 
and 1, respectively) as well as probes for other function-
ally relevant genes involved in metabolism, adipogenesis, 
and sexual maturation (Supplementary File 1). Further 
details on gene/paralog selection and naming are avail-
able in Kurko et al. (2020), and gene accession numbers, 
symbols, full names, and functional categories as well as 
RNA hybridization procedures can be found in Ahi et al. 
(2024b).

Data analysis
In the ovary, all nine candidate reference genes in the 
panel, including actb, ef1aa, ef1ab, ef1ac, gapdh, hprt1, 
prabc2a, prabc2b and rps20, were used for data nor-
malization due to their low coefficient of variation (CV) 
values across the samples. In the adipose tissue, seven 
genes (excluding actb and gapdh) were chosen for nor-
malization as they also exhibited low CV values. For the 
brain, the same set of reference genes was used, exclud-
ing gapdh because of its high expression variation 
across samples in this tissue. The raw count data from 
the NanoString nCounter mRNA expression analysis 
was normalized using an RNA content normalization 
factor. This factor was calculated based on the geomet-
ric mean of selected reference gene counts for each tis-
sue. Following normalization, a quality control check 
was conducted, and all samples met the default thresh-
old as determined by the nSolver Analysis Software 
v4.0 (NanoString Technologies). During data analysis, 
the mean of the negative controls was subtracted, and 
normalization of the positive controls was performed 
using the geometric mean of all positive controls. A 
normalized count value of 20 was set as a background 
signal threshold. Below-average background signals 
were detected in 121, 82, and 77 genes across the sam-
ples in adipose, brain, and ovary, respectively, and were 
removed from further analyses. Sex-specific differential 
expression and Weighted Gene Coexpression Network 
Analysis (see below) were only investigated in the two 
tissues that are analogous between males and females 
(brain and adipose). Differential expression analy-
sis was conducted using the log-linear and negative 
binomial model (lm.nb function) as implemented in 
NanoString’s nSolver Advanced Analysis Module (nS/
AAM). Sexes and genotypes were selected as predictor 
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covariates in the model, as suggested by nS/AAM. Mul-
tiple hypothesis testing adjustment was performed 
using the Benjamini–Yekutieli method [48] within the 
software, and adjusted p-values < 0.05 were considered 
significant (Supplementary File 2).

The Weighted Gene Coexpression Network Analysis 
(WGCNA version 1.68) R-package (version 5.2.1) was 
implemented to identify gene co-expression modules, 
GCM [49]. Since our main interest was the comparison 
between sexes, all samples from both genotypes (for the 
adipose tissue and brain, separately) were used as biologi-
cal replicates, providing sufficient statistical power for 
WGCNA. To identify sample relationships, hierarchi-
cal clustering of samples based on gene expression was 
conducted. Coexpression networks were constructed via 
seven steps described in [23]. Then, a conditional coex-
pression analysis was conducted as in Singh et  al. [50]. 
Coexpression networks were constructed for each sex 
separately to identify the preservation of female modules 
in the male network and vice versa. A soft power of 8 was 
used to construct the adjacency matrix. Finally, module 
preservation statistics were calculated using WGCNA to 
test how the density and connectivity of modules defined 
in the reference dataset (e.g., female brain) were pre-
served in the query dataset (e.g., male brain) [51]. A per-
mutation test was implemented in the query network to 
calculate Z-scores and individual Z-scores from 200 per-
mutations were summarized as a Z-summary statistic.

To further characterize the GCMs identified through 
WGCNA, we used WebGestalt [52] to examine similari-
ties and differences between sexes in the biological pro-
cesses associated with the genes within each module. 
Specifically, we tested for changes in module GO-asso-
ciation between the sexes as follows. We first identi-
fied GO-associations for each module using a gene-set 
overrepresentation test at a false discovery rate (FDR) 
of < 0.05, with a specific threshold for Gene Ontology/
Biological Process (GO/BP) level 2 inclusion and all pro-
tein-coding genes as background. We then compared the 
GO/BP associations of each module between the sexes. 
This was performed for each tissue separately. To predict 
potential gene interactions and identify key genes with 
the highest number of interactions (interacting hubs), 
the identified differentially expressed genes in each com-
parison were converted to their conserved orthologs in 
humans (providing the highest amount of validated/stud-
ied interactome data in vertebrates) and used as input 
for STRING version 12.0 using the medium confidence 
level for predicting each interaction/molecular connec-
tion [53]. The predicted interactions between genes were 
derived from data on structural similarities, cellular co-
localization, biochemical interactions, and patterns of 
co-regulation.

Results
Female gene expression differences between vgll3 
genotypes
Assessment of expression differences between vgll3 gen-
otypes in females revealed 15 differentially expressed 
genes (DEGs) in the brain, 16 genes in the ovary and 29 
genes in adipose tissue. In the brain, 10 out of 15 DEGs 
showed higher expression in vgll3*EE genotype individu-
als (Fig. 1A). A query of molecular interactions revealed 
three genes, rhoaf, pparga and frmd6a, showing direct 
interaction with yap1 (specified with connecting lines 
between the genes in Fig. 1B). Among these three genes, 
frmd6a showed lower expression in vgll3*EE individu-
als whereas the two other genes (rhoaf and pparga) had 
higher expression in vgll3*EE individuals (Fig. 1B). Simi-
larly in the ovary, 10 out of 16 DEGs showed higher 
expression in vgll3*EE genotype individuals (Fig.  1A). 
The predicted interactions revealed six genes (arrb1, 
amotl2a, pax3b, snai2b, tead1a and tead3a) with direct 
molecular interaction with yap1. In addition, three of 
these genes (amotl2a, tead1a and tead3a) had a direct 
interaction with vgll3 (Fig.  1B). Three of the interact-
ing genes, arrb1, snai2b, and tead3a, had higher expres-
sion in vgll3*EE individuals whereas the remaining 
three had lower expression in this genotype. Unlike the 
brain and ovary, all 29 DEGs identified in adipose tissue 
showed lower expression in vgll3*EE genotype individu-
als (Fig. 1A). The interaction query identified seven adi-
pose DEGs (ajubab, ets1e, foxo1c, lats2a, kdm5bc, tead3a 
and wwtr1b) with direct interactions with yap1, whereas 
four genes (akap11a, ets1e, tead3a and wwtr1b) had a 
direct interaction with vgll3 (Fig.  1B). One of these dif-
ferentially expressed genes with direct connection with 
yap1, foxo1c, formed an interacting hub, and three of its 
interacting genes, pparaa, ppargc and esrrab, appeared 
to make further interacting hubs by connecting to other 
genes (Fig.  1B). We did not find any DEGs overlapping 
between the tissues (Fig. 1C), and adipose tissue was the 
only tissue where vgll3a was differentially expressed, with 
lower expression in vgll3*EE genotype individuals.

Sex‑specific gene expression differences in the brain
To identify gene expression differences between the 
female and male brain, we compared individuals from 
both sexes at a similar developmental time point in the 
summer (the Immature 2 stage from Ahi et  al. 2024), 
when some males, but no females, were starting to show 
phenotypic signs of maturation (see “Methods”). We 
identified 45 DEGs between female and male individu-
als when both vgll3 genotypes were combined, and when 
considering vgll3 genotypes separately, 23 and 33 DEGs 
were identified in female vs. male vgll3*LL and vgll3*EE 
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genotypes, respectively (Fig. 2A). Furthermore, we found 
a general tendency for DEGs to have higher expression 
in the brain of immature females whereby higher expres-
sion in females was observed in all of the 45 genes for the 
combined genotypes, 21 out of 23 DEGs for the vgll3*LL, 
and 29 out of 33 DEGs for the vgll3*EE comparisons 
(Fig.  2A). Across all three comparisons, expression pat-
terns of three DEGs, arhgef25b, cadm2a and frm6a, were 
independent of vgll3 genotype, and all these genes had a 
higher expression level in immature females compared 
to males (Fig.  2A). These results indicate higher tran-
scriptional activity of the studied genes in the brain of 

immature females compared to males at this time of the 
life-cycle.

We further investigated potential functional/molec-
ular interactions between DEGs showing vgll3 geno-
type-specific differential expression (colored numbers 
and circles in Fig.  2B, C). The predicted interactions 
between these genes revealed extensive and complex 
regulatory connections between the DEGs in each 
genotype (Fig.  2B). From the vgll3 genotype-specific 
comparisons, 13 and 19 DEGs within vgll3*LL and 
vgll3*EE individuals, respectively, were found to be 
connected in the interaction network (circled in red 

Fig. 1 Differentially expressed genes in three tissues of female Atlantic salmon with alternative vgll3 genotypes and their predicted interactions. 
Heatmaps represent differentially expressed genes between vgll3 genotypes in three tissues (A) and their respective predicted interactions 
in each tissue using STRING v12 (http:// string‑ db. org/) (B). The thickness of the connecting lines between the genes indicates the probability 
of the regulatory/functional interactions. Blue and yellow colors in A indicate higher and lower expression, and in B, higher and lower expression 
in vgll3*EE individuals, respectively. A Venn diagram showing the lack of differentially expressed genes overlapping between the comparisons (C)

http://string-db.org/
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and green in Fig.  2B). Moreover, except for aldh1a2 
within the vgll3*LL network (green circled), and six1 
and rpabc2a/POLR2F within the vgll3*EE network 
(red circled), all other genes in both networks had 
higher expression in females (Fig.  2B). Further, some 
of the genes in each genotype network had high num-
bers of interactions in the networks including ets1a, 
egr1d, foxo1c, lats1b and snai2b in the vgll3*LL inter-
action network, and fgf8b, rhoad, tead1a and tead3a 
in the vgll3*EE network (Fig. 2B). These findings imply 
that specific components of the Hippo pathway might 
be responsible for the elevated transcriptional activity 
observed in the brains of females compared to males.

Sex‑specific gene expression differences in adipose tissue
Similar comparisons to those conducted in brain tissue 
were conducted in adipose and seven DEGs were iden-
tified between female and male individuals when both 
vgll3 genotypes were pooled. When considering vgll3 
genotypes separately, we found six DEGs in the vgll3*LL 
genotype and 23 DEGs in the vgll3*EE genotype indi-
viduals (Fig.  3A). Furthermore, we found that all DEGs 
in the pooled genotypes and in vgll3*LL had increased 
expression in females, whereas most DEGs in vgll3*EE 
(17 out of 23) had higher expression in males. No gene 
was differentially expressed in all comparisons (Fig. 3B). 
These results indicate significantly more pronounced and 

Fig. 2 Differentially expressed genes between female and male Atlantic salmon and their predicted interactions in the brain. Heatmaps 
representing differentially expressed genes between the sexes in immature individuals with alternative vgll3 genotypes pooled, and within vgll3*LL 
and vgll3*EE genotypes (A). Predicted interactions between the overlapping genes, with green, red and blue rings indicating the genes in the Venn 
diagram (B). The thickness of the connecting lines between the genes indicates the probability of the interaction. Blue and yellow colors indicate 
higher and lower expression in female individuals, respectively. A Venn diagram showing the numbers of differentially expressed genes overlapping 
between the comparisons (C). The color coding of the numbers corresponds to the gene colors shown in the list of genes within the heatmaps
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stronger sex-specific expression in the adipose tissue of 
individuals with the vgll3*EE genotype.

We further investigated potential functional/molecu-
lar interactions between DEGs showing vgll3 genotype-
specific differential expression (colored numbers in 
Fig. 3B). In the vgll3 genotype-specific comparisons, two 
and 13 DEGs within vgll3*LL and vgll3*EE individuals, 
respectively, were found to be connected in the interac-
tion network (circled in red and green in Fig. 3C). While 
both genes from the vgll3*LL comparison, cadm2bb 
and wnt5a, had higher expression in females compared 
to males, seven genes from the vgll3*EE comparison 
showed lower expression in the females (Fig. 3C). A few 
genes in each genotype-specific sex comparison had a 
high number of interactions in the networks, including 
wnt5a in the vgll3*LL network, as well as rhoag, foxo1c, 
and stk4 in the vgll3*EE network (Fig.  3C). Among the 
genes with a high number of interactions in the predicted 
network, rhoag and foxo1c showed lower expression in 
females. Importantly, two key components of the Hippo 

pathway, frmd6 and stk4/mst1, had the strongest pre-
dicted interaction with yap1 and both showed increased 
expression in females with the vgll3*EE genotype. Taken 
together, these findings suggest that the pronounced 
transcriptional differences observed in the adipose tissue 
of vgll3*EE individuals are likely mediated by key compo-
nents of the Hippo pathway.

Identification of sex‑specific gene coexpression modules 
in the brain
In order to gain a better overview of sex-specific tran-
scriptional differences of Hippo pathway components 
and their known interacting genes in the brain, we 
applied network-based co-expression analyses in which 
changes between the sexes in each network could be 
tracked. To do this, we first built gene coexpression mod-
ules (GCMs) in the brain of each sex and then investi-
gated the preservation of the identified GCMs between 
the sexes. In other words, we defined the GCM in one 
sex and then assessed the preservation of its modules in 

Fig. 3 Differentially expressed genes between female and male Atlantic salmon and their predicted interactions in adipose tissue. Heatmaps 
representing differentially expressed genes between the sexes in the immature individuals across alternative vgll3 homozygotes, and within vgll3*LL 
and vgll3*EE genotypes (A). A Venn diagram showing the numbers of differentially expressed genes overlapping between the comparisons 
and the color coding of the numbers corresponds to the gene colors shown in the list of genes within the heatmaps (B). Predicted interactions 
between the overlapping genes, with green and red rings indicating the genes in the Venn diagram (C). The thickness of the connecting lines 
between the genes indicates the probability of the interaction. Blue and yellow colors indicate higher and lower expression in female individuals, 
respectively
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the other sex. We identified five brain GCMs for females 
(Fig. 4A, B) of which one GCM (brown) showed relatively 
high preservation (Zsummary > 2) in males, i.e. most of 
the genes in this GCM have significant expression corre-
lations in both sexes. Three of the GCMs (yellow, green 
and blue) showed a low to moderate level of preservation 
between the sexes (Zsummary = 0–2); and the turquoise 
GCM, containing the highest number of genes (63 genes), 
showed the lowest level of preservation (Fig. 4B). Next, a 
gene set enrichment analysis was conducted for the GCM 
with the lowest level of preservation between females and 
males (turquoise) in order to provide insights into the 
biological processes associated with male vs. female dif-
ferences. The most common biological processes of the 
genes in the least preserved (turquoise) GCM included 
regulation of vitamin D biosynthesis, cell–cell junction 
assembly, Hippo signaling pathway, cellular response to 
lipid and steroid hormone mediated signaling pathway 
(Fig.  4C). Almost half its genes in this turquoise GCM 
showed no coexpression preservation in males (genes 
lacking color in Fig. 4C). Removal of unpreserved genes 
in the turquoise GCM led to loss of significance of three 
GO terms; Hippo signaling pathway, cellular response to 
lipid and steroid hormone mediated signaling pathway 
(non-colored GOs in Fig. 4C). Knowledge-based interac-
tome prediction using genes within the turquoise GCM 
was performed in order to identify potential interac-
tions between the genes as well as hub genes with highest 
number of interactions [54]. The prediction of interac-
tions between the genes within this GCM revealed that 
several genes among those lacking coexpression preser-
vation directly interacted with vgll3/yap1 (represented 
with lines directly connecting the non-colored genes 
with vgll3/yap1; Fig. 4D). These genes include ets1, tead1, 
tead3a and wwtr1b showing direct interactions with vgll3 
as well as egr1, kdm5b, pax3, rhoa, rock1, snai2b, snai1, 
stk3, tead1, tead3a and wwtr1b showing direct interac-
tions with yap1 (Fig. 4D).

We found four GCMs in males and among them, 
the red GCM showed the lowest level of preservation 

(Zsummary < 0) compared to females (Fig.  5A, B). The 
red GCM was also the largest with 42 co-expressed genes 
and more than half of these genes showed no coexpres-
sion preservation in females compared to males (genes 
lacking color in this GCM in Fig.  5C), suggesting this 
GCM to be of most interest for identifying genes impor-
tant for male vs. female differences. The gene set compar-
ison of the least preserved red GCM identified four GOs 
including regulation of tight junction assembly, Hippo 
signaling pathway, developmental growth and hormone-
mediated signaling pathway (Fig.  5C), suggesting these 
processes to be important in determining male vs. female 
differences. Furthermore, removal of unpreserved genes 
in the red GCM led to absence of significance of all 
these GOs (non-colored GOs in Fig. 5C).The prediction 
of interactions between the genes within the red GCM 
revealed that six genes that lost their coexpression pres-
ervation, frmd6, rhoa, rock1, sav1, snai and tead3, had 
direct interaction with yap1 whereas two unpreserved 
genes, ets1 and tead3 had direct interactions with vgll3 
(Fig. 5D). Importantly, yap1 itself lost coexpression pres-
ervation in the red GCM, indicating the involvement of 
yap1, the major inhibitor of the Hippo pathway, in sex 
differences in the lowest preserved GCM. This suggests 
that the observed male-specific transcriptional pattern in 
the brain might be mediated by yap1-dependent differen-
tial activity of the Hippo pathway.

Identification of sex‑specific gene coexpression modules 
in the adipose tissue
Gene coexpression module analyses were conducted for 
the adipose tissues of both sexes as described for the 
brain (see above). After building the GCMs for the adi-
pose tissue of each sex, we investigated the preservation 
of the identified GCMs between the sexes and found no 
unpreserved GCM in male adipose tissue, indicating that 
the identified GCMs in males occur in both sexes. How-
ever, among the seven GCMs identified in the females 
(Fig. 6A, B), one GCM (yellow) showed a very low level 
of preservation (Zsummary < 0) in males and it was thus 

(See figure on next page.)
Fig. 4 Coexpression modules in the brain of female Atlantic salmon. Visual representation of female module preservation in male individuals. 
The dendrograms represent average linkage clustering tree based on topological overlap distance in gene expression profiles. The lower panels 
of the dendrograms represent colors that correspond to the female clustered coexpression modules (GCMs). Top: female GCMs with assigned 
colors. Bottom: visual representation of the lack of preservation of female GCMs genes in male individuals (A). Preservation Zsummary scores 
in the male GCMs for female GCMs (colors represent female GCMs). Zsummary < 0 represents lack of preservation (dotted blue line) and Zsummary 
0–2 implies moderate preservation (B). The genes in turquoise GCM identified in female brain with least preservation in males. The genes 
without color in the module are those showing no preserved expression correlation in male individuals and the clockwise arrows above the GCM 
indicate the direction of genes with highest to lowest expression correlations with other genes within the GCM. In the turquoise GCM, the top 
enriched GOs are represented, and GOs without color were no longer enriched after removal of the genes without colors (C). Predicted interactions 
between the genes within the turquoise GCM. Increasing thickness level in the connecting lines between the genes indicates a higher probability 
of the interaction (D)
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Fig. 4 (See legend on previous page.)
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investigated further using gene-set enrichment as above. 
We detected two over-represented GO terms, namely 
regulation of cAMP-dependent protein kinase activ-
ity and Hippo signaling pathway (Fig. 6C). In the yellow 
GCM, we also found that almost half of the genes showed 
no coexpression preservation in males (9 out of 19 genes 
lacking color in this GCM in Fig. 6C). Removal of unpre-
served genes in the yellow GCM led to loss of significance 
of the GO term associated with the Hippo signaling path-
way (the non-colored GO in Fig. 6C). Knowledge-based 
interactome prediction using genes within the yellow 
GCM revealed several hub genes (e.g., amotl2, lats1, 
rhoa, fgf2 and wnt5a) (Fig.  6D). Furthermore, among 
those genes not showing coexpression preservation, one 
gene, kdm5b, had direct predicted interaction with vgll3 
and three genes, kdm5b, lats1 and fgf2, had direct inter-
actions with yap1 (represented with lines directly con-
necting the non-colored genes with vgll3/yap1; Fig. 6D). 
Among the genes directly interacting with vgll3 and/or 
yap1, three genes; sav1, amotl2, and lats1; show strong 
interactions and acting as upstream regulators of the 
Hippo pathway (all are upstream inhibitors of yap1). 
Since only lats1 does not show co-expression preserva-
tion, this suggests that lats1 may play a critical role in 
mediating the regulatory effects seen in this tissue. Taken 
together, these results suggest that the overall sex-spe-
cific differences in the expression of Hippo pathway com-
ponents and its interacting partners might be influenced 
by lats1 transcription in the adipose tissue.

Discussion
In this study, we explored how [sex and] the genotype of 
a major maturation age gene, vgll3, interplay[s] with tis-
sue in driving sex-specific expression patterns potentially 
associated with the onset of maturity in Atlantic salmon. 
We did this by profiling the expression of known compo-
nents of the Hippo pathway and their interacting partners 
in brain, adipose, and gonad tissues at a stage when some 
males begin to exhibit signs of pubertal initiation while 
other males and all females remain immature. In general, 

we observed more extensive vgll3 genotype effects on 
gene expression in adipose tissue of females compared 
to the brain and ovary. Compared to the other two tis-
sues, expression differences in adipose tissue seemed to 
be more linked with Hippo pathway signaling, as several 
components of this pathway, including vgll3a itself, were 
differentially expressed between alternative vgll3 geno-
types. These results are concordant with earlier research 
in mammals suggesting the Hippo pathway plays a piv-
otal role in balancing adipocyte proliferation vs. differen-
tiation [28]. For example, vgll3 has been reported as an 
inhibitor of adipocyte differentiation in mice [29], and 
also the activity of Yap has been suggested to be indis-
pensable during adipogenesis [28]. Additionally, a major 
Hippo pathway kinase, encoded by lats2, which was 
differentially expressed in female adipose tissue in our 
study, is known to promote the lipolysis process in mouse 
adipocytes [55]. Our recent findings in male Atlantic 
salmon also imply that vgll3 and its associated Hippo 
pathway have extensive effects on transcriptional changes 
in adipose tissue in relation to sexual maturation, as well 
as linking adipogenesis and seasonal changes in this spe-
cies [23].

In contrast to adipose tissue, in the female brain, there 
were fewer DEGs, and none of the major components 
of the Hippo pathway were found to be differentially 
expressed between the vgll3 genotypes. This suggests a 
potentially significant difference in the functional role 
of Hippo pathway signaling between the brain and adi-
pose tissue in females, at least at this developmental time 
point. In contrast, at the same immature stage, the brain 
of males showed very distinct transcriptional activa-
tion of the Hippo pathway between the genotypes [25]. 
In males, tead2, encoding a major transcription fac-
tor of the Hippo pathway, and three interacting partner 
genes of the Hippo pathway (kdm5b/jarid1b, mc4ra, 
and foxo1c) that play roles in the central regulation of 
the onset of puberty [56–58], had higher expression in 
the brain of individuals with the vgll3*EE genotype [25]. 
None of these genes were differentially expressed in the 

Fig. 5 Coexpression modules in the brain of male Atlantic salmon. Visual representation of male module preservation in female individuals. 
The dendrograms represent average linkage clustering tree based on topological overlap distance in gene expression profiles. The lower panels 
of the dendrograms represent colors that correspond to the male clustered coexpression modules (GCMs). Top: male GCMs with assigned colors. 
Bottom: visual representation of the lack of preservation of male GCMs genes in female individuals (A). Preservation Zsummary scores in the female 
GCMs for male GCMs (colors represent male GCMs). Zsummary < 0 represents lack of preservation (dotted blue line) and Zsummary between 2 
and 6 implies moderate preservation (B). The genes in the red GCM identified in males with least preservation in females. The genes without color 
in the module are those showing no preserved expression correlation in female individuals and the clockwise arrows above the GCM indicate 
the direction of genes with highest to lowest expression correlations with other genes within the GCM. In the red GCM, the top over‑represented 
GOs are listed, and GOs without color were no longer enriched after removal of the genes without colors (C). Predicted interactions 
between the genes within the red GCM. Increasing thickness level in the connecting lines between the genes indicates a higher probability 
of the interaction (D)

(See figure on next page.)
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female brain between the vgll3 genotypes, indicating a 
sex-specific difference in the involvement of Hippo path-
way components in central sexual maturation signals at 
this developmental timepoint (Fig.  1). However, four 
additional genes—dlk1b, pgra, rhoaf, and zic1b—which 

encode other interacting partners of the Hippo path-
way, were found to have higher expression in the brains 
of females with the vgll3*EE genotype. This is particu-
larly striking because the orthologs of these genes (DLK1, 
PGR, RHOA, and ZIC1) are all known to be involved in 

Fig. 5 (See legend on previous page.)
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the central regulation of pubertal onset in human [59–
62]. Furthermore, two of these genes, DLK1 and PGR, 
have also been demonstrated to have sex-specific roles 
during puberty.

In the ovary, we found a lower number of DEGs 
between vgll3 genotypes than in adipose tissue. How-
ever, unlike the brain, major components of the Hippo 

pathway were differentially expressed, such as amotl2a, 
arrb1, tead1a, and tead3a. Recent studies have shown 
that the core components of the Hippo pathway play 
important roles in mammalian ovarian physiology, 
including ovarian development, follicle development, 
and oocyte maturation (reviewed by Clark et  al. [63]). 
For instance, the higher expression of arrb1 in the ovary 

Fig. 6 Coexpression modules in female Atlantic salmon adipose tissue. Visual representation of female module preservation in male individuals. 
The dendrograms represent average linkage clustering tree based on topological overlap distance in gene expression profiles. The lower panels 
of the dendrograms represent colors that correspond to the female clustered coexpression modules (GCMs). Top: female GCMs with assigned 
colors. Bottom: visual representation of the lack of preservation of female GCMs genes in male individuals (A). Preservation Zsummary scores 
in the male GCMs for female GCMs (colors represent female GCMs). Zsummary < 0 represents lack of preservation (dotted blue line) and Zsummary 
0–2 implies moderate preservation (B). The genes in yellow GCM identified in female adipose tissue with least preservation in males. The genes 
without color in the module are those showing no preserved expression correlation in male individuals and the clockwise arrows above the GCM 
indicate the direction of genes with highest to lowest expression correlations with other genes within the GCM. In the yellow GCM, the top 
enriched GOs are represented, and GOs without color were no longer enriched after removal of the genes without colors (C). Predicted interactions 
between the genes within the yellow GCM. Increasing thickness level in the connecting lines between the genes indicates a higher probability 
of the interaction (D)
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of fish individuals with the vgll3*EE genotype could thus 
indicate enhanced ovarian development, as arrb1 is 
involved in cellular responses to hormones and growth 
factors and is an important marker of developing ovary 
[64]. Among the interacting partners of the Hippo path-
way, snai2b, a known marker of primordial ovarian fol-
licles [65], also showed higher expression in the ovary 
of vgll3*EE individuals. Another notable gene with 
increased expression in the ovary of vgll3*EE individu-
als was esrra (nr3b1), which encodes an orphan estrogen 
receptor with an important role in angiogenesis during 
ovarian development [66]. Moreover, we found reduced 
expression of cyp26a1, which encodes an enzyme that 
inhibits ovarian development by blocking retinoic acid 
(RA) signaling, in the ovary of individuals with the 
vgll3*EE genotype [67]. These findings suggest potential 
differences in Hippo pathway-mediated ovarian devel-
opment between the vgll3 genotypes in Atlantic salmon, 
with possibly more advanced ovarian development in 
vgll3*EE individuals. However, future studies on ovar-
ian development, including time series analyses from 
immature to mature females, similar to the recent work 
focused solely on vgll3 expression [68], are necessary to 
fully understand these differences. Such studies should 
explore not only the expression of the entire components 
of the pathway but also the changes at cellular-level, 
offering deeper insights into the regulatory interactions 
that govern ovarian maturation.

Gene expression differences suggest differences in lipolysis 
capacity and adipogenesis of females with distinct vgll3 
genotypes
We found lower expression of vgll3a in the adipose tis-
sue of vgll3*EE females, consistent with previous findings 
in males where we observed differences in lipid content 
and gene expression patterns in liver and adipose tissues 
between the vgll3 genotypes, suggesting vgll3*EE males 
may store larger lipid droplets in the spring/summer 
(many months before spawning time), whereas vgll3*LL 
individuals store in the autumn [23, 69]. This supports 
the scenario whereby vgll3*EE individuals have a higher 
adipogenesis capacity in the spring in both sexes. How-
ever, a closer examination of the DEGs between the gen-
otypes adds further details to the interpretation of the 
results. For example, vgll3 and TAZ (WWTR1), both of 
which had reduced expression in vgll3*EE individuals, 
which are described as inhibitors of the terminal stage 
of adipocyte differentiation [29, 70]. On the other hand, 
we also found lower expression of initial-stage adipo-
genesis markers, such as ppargc, cebpda, ajubab and 
esrra, in vgll3*EE individuals [71–74]. Specifically, while 
pre-adipocyte differentiation might be at a lower level 
in vgll3*EE individuals (due to reduced ppargc, cebpda, 

ajubab and esrra expression), the terminal stage of adi-
pocyte maturation might be promoted (due to reduced 
vgll3a and taz/wwtr1b expression) and the opposite may 
be true for vgll3*LL individuals. This complex transcrip-
tional signature suggests that the genotype difference 
may lie in specific stages of adipogenesis (e.g., hetero-
chrony) rather than in overall adipogenesis capacity. In 
other words in vgll3*EE individuals, the pre-adipocyte 
differentiation phase has already been completed, and the 
adipocytes have entered the terminal stage of differen-
tiation. In contrast, in vgll3*LL individuals, the pre-adi-
pocytes are still in the early stages of differentiation and 
have not yet progressed to their final stage. In addition, 
we found reduced expression of lipolysis factors, includ-
ing lats2, foxo1c, and pparaa, in vgll3*EE female adipose 
[55, 75, 76]. This reduction may indicate an increased 
lipid-storing capacity in the vgll3*EE genotype, as the 
expression of lipolysis markers is typically reduced when 
lipid storage is prioritized. Together, these findings sug-
gest reduced pre-adipocyte differentiation and lipolysis 
capacity, alongside enhanced adipocyte maturation and 
lipid storage capacity in vgll3*EE females during the sum-
mer. This is concordant to findings in males at the same 
developmental time point [23, 77].

Extensive sex‑specific differences in transcription 
of the Hippo pathway components in the adipose tissue 
of vgll3*EE individuals
Assessment of adipose tissue transcriptional differences 
between the sexes revealed more pronounced sex dif-
ferences in vgll3*EE individuals compared to vgll3*LL 
individuals (Fig.  3). Sex-specific expression patterns in 
vgll3*EE individuals were observed in components of 
the Hippo pathway (such as stk4, frmd6c, and pcdh18a) 
as well as interacting partners of this pathway that play 
important roles in adipogenesis and lipolysis (such as 
esrra, foxo1c, rhoag, and cebpda/b). Among the Hippo 
pathway components, stk4 is known to have an impor-
tant role in adipogenesis, with increased activity leading 
to augmented adipose mass and obesity while reducing 
the energy expenditure of adipose tissue by impairing 
mitochondrial function [78]. Thus, the higher expression 
of stk4 in vgll3*EE females may indicate weaker energy 
expenditure performance compared to males with the 
same genotype, resulting in more adipose mass gain. 
Consistently, the lower expression of a RhoA paralog gene 
(rhoag) in vgll3*EE females indicates a higher capacity 
for adipogenesis and lipid droplet storage, as RhoA is a 
major suppressor of both processes in mammalian cells 
[79]. Moreover, a pre-adipocyte differentiation marker, 
esrra [71], was found to be induced in vgll3*EE females, 
concordant with increased adipogenesis in these females. 
Higher expression of a RND3 paralog gene (rnd3b), 
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encoding a key inhibitor of lipolysis [80], and reduced 
expression of foxo1c, an inducer of lipolysis [75], in 
vgll3*EE females suggests potentially reduced lipolysis in 
their adipose tissue. These results suggest higher fat accu-
mulation and adipogenesis in vgll3*EE females compared 
to the males with the same genotype, but potentially with 
a lower capacity for energy expenditure.

Sex‑specific links between the Hippo pathway 
and cAMP‑dependent protein kinase activity in adipose 
tissue
Our co-expression analysis revealed that only one GCM 
identified in the female adipose tissue was not preserved 
in the males (yellow module in Fig.  6). This means that 
most of the gene expression correlations within the yel-
low module were absent in males, meaning the functional 
relationships between these genes were not maintained 
in the adipose tissue of males. This GCM in females 
included correlated expression of several components of 
the Hippo pathway (such as arrb1, lats1b, amotl2a, and 
sav1) and genes involved in the regulation of cAMP-
dependent protein kinase A (PKA) activity (such as 
prkar1a, prkar2a, prkar2b, cebpa, myf5, fgf2, and rhoa). 
PKA activity is a major signal controlling lipid metabo-
lism, particularly lipolysis [81]. For instance, in mice, the 
loss of prkar1a enhances lipolysis in adipose tissue and 
leads to rapid weight loss [82], while prkar2b function 
is required for adipocyte differentiation [83]. In males, 
the correlation between the Hippo and PKA signals 
appears to be absent (Fig.  6C). The major Hippo com-
ponent affected was lats1b (another inducer of lipolysis 
[84]), as it did not show expression correlation with the 
PKA components in the adipose tissue of males. Interest-
ingly, the crosstalk between the Hippo and PKA signals 
is known to be mediated directly through the phospho-
rylation of LATS1 or indirectly through the activation 
of RhoA by PKA in mammals [85]. These interactions 
can lead to synergistic activation of both signals in vari-
ous tissues. Our result here suggests that the sex-spe-
cific mechanism predicted earlier (see above), by which 
females exhibit higher adipogenesis and lower levels of 
energy expenditure compared to males, might originate 
from this link between the PKA and Hippo signals that 
exists only in the female adipose tissue. This may also 
indicate that while females might store a larger amount of 
lipid and gain more fat mass, they may delay in utilizing 
these reserves, leading to later maturation overall.

Gene expression differences suggest higher activity 
of the Hippo pathway in the brain of females compared 
to males
We found genotype-independent induced expression 
of frmd6a, encoding a major upstream regulator of the 

Hippo pathway, in the brain of immature females when 
compared to immature males (Fig.  2). FRMD6/Willin 
expression is tightly co-localized with GHRH (growth 
hormone-releasing hormone) in nerve cells, particularly 
in the nerves densely populated in the hypothalamus and 
anterior pituitary of vertebrates [86]. GHRH is one of the 
earliest discovered hypothalamic factors involved in the 
sexually dimorphic pubertal timing of mammals [87]. 
However, the regulatory connection between FRMD6 
and GHRH during sexual maturation remains to be elu-
cidated. FRMD6 is considered a potent inhibitor of YAP1 
and an activator of the Hippo pathway [88], suggesting 
that the Hippo pathway is generally more active in the 
female brain than in males at this time point. Despite 
distinct transcriptional signatures between the vgll3 
genotypes, both genotypes reflected higher Hippo path-
way activity in the female brain (e.g., increased expres-
sion of lats1b in females with the vgll3*LL genotype, and 
tead1 and tead3a in females with the vgll3*EE genotype) 
(Fig.  2). Another noteworthy gene with genotype-inde-
pendent induced expression in females was cadm2a, 
which encodes another conserved cell adhesion protein 
highly expressed during vertebrate brain development 
[89]. CADM2 is also known as a factor linking psycho-
logical/behavioral traits and obesity, as well as the brain 
and adipose tissues [90]. CADM2 has been indicated to 
have sex-dependent expression during brain develop-
ment and function in humans [91]. Finally, the third gene 
identified with genotype-independent induced expres-
sion in the female brain was arhgef25b (known as GEFT 
in mammals), encoding a Rho-GTPase enzyme required 
for neurite outgrowth, which is responsible for neuronal 
patterning and connections [92]. A study in clownfish 
found arhgef25 to be one of the few sex-dependent genes 
during sexual transition, required during the female stage 
in this species [93]. These findings suggest a potential 
molecular axis whereby the brain senses varying energy 
storage status in adipose tissue and responds in a sex-
specific manner. This axis may be triggered by the differ-
ential expression of cadm2a in response to adipose tissue 
energy status, leading to changes in cell adhesion dynam-
ics. These changes could activate Rho-GTPase enzymes 
(e.g., arhgef25b/GEFT) [94], and the Rho-ROCK signal-
ing [95]. Activated Rho-ROCK then regulates P53 [96], 
an apoptosis factor that can induce frmd6 expression, as 
observed in mammalian neural cells [97]. The induction 
of frmd6 activates the Hippo pathway in the hypothala-
mus, potentially delaying the onset of puberty in females 
compared to males. Although speculative, as this pro-
posed regulatory axis is based on observations in mam-
malian cells, it is worthy of future testing in fishes and 
other vertebrates.
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Sex‑specific links between the Hippo pathway and lipid, 
hormone, and cell adhesion signals in the brain
Our co-expression analysis in the brain showed that there 
was at least one sex-specific gene co-expression module 
(GCM) in each sex i.e. gene coexpression was not pre-
served in the opposite sex (Figs. 4, 5). This indicates that 
the majority of gene expression correlations observed 
within the turquoise GCM in the female brain and the red 
GCM in the male brain were absent in the opposite sex. 
This suggests that the functional relationships between 
these genes were not maintained in the brains of males 
and females, respectively. In the female brain, the largest 
identified GCM (turquoise GCM in Fig. 4) was the least 
preserved in the male brain. The turquoise GCM con-
sisted of genes encoding components of the Hippo path-
way and molecular processes including signals mediated 
by lipid and steroid hormone as well as cell–cell junction 
and vitamin D biosynthesis (Fig.  4C). The identification 
of lipid-mediated signals in the brain is not surprising, 
as the brain is known to sense somatic energy storage 
[98]. While metabolic control of puberty has been stud-
ied for decades, the molecular links between fat storage, 
the brain, and sexual maturation remain underexplored 
[98]. Recent studies have emphasized the role of lipid-
sensing signals (e.g., insulin, mTOR, AMPK) in triggering 
puberty and fat-induced precocious puberty [99–101]. 
Interestingly, these signals are known to interact with the 
Hippo pathway [30, 101, 102]. Moreover, excess lipids 
can directly modulate the Hippo pathway through physi-
cal interactions with TEADs [102]. Thus, our findings in 
the turquoise GCM indicate that there are sex-specific 
transcriptional signatures of the Hippo pathway compo-
nents (e.g., tead1 and tead3) and factors mediating lipid 
sensing and hormonal signals in the brain.

In the male brain, the red GCM (the least preserved in 
the female brain) comprised genes encoding components 
of the Hippo pathway and three other molecular pro-
cesses involved in hormone-mediated signals, develop-
mental growth, and tight junction assembly (Fig. 5). The 
factors underlying tight junction assembly in the brain 
are crucial for the formation and integrity of the blood–
brain barrier, BBB [103, 104], and sex hormones influence 
the tightness of the BBB [105, 106]. Importantly, the BBB 
is vital for brain permeability during puberty, and sex-
specific differences in BBB permeability have been dem-
onstrated in mammalian studies [106–108]. The Hippo 
pathway is emerging as a key player in BBB formation, 
homeostasis, and regeneration through the regulation of 
tight junction proteins [109–111]. Therefore, the distinct 
sex-specific transcriptional signatures of these compo-
nents observed in the salmon brain suggests potential 
Hippo pathway-dependent differences in BBB tightness, 
which may underlie sex differences in BBB permeability 

and lead to distinct brain responses to maturation-related 
circulating molecules (e.g., lipids) also in this species.

Potential limitations and future directions
While this study provides valuable insights into gene 
expression differences, additional validation using com-
plementary techniques such as qPCR or in situ hybridiza-
tion could further support the findings. The NanoString 
technology employed here is highly sensitive, particu-
larly for detecting low-expressed genes, and offers par-
alog-specific probe design and absolute quantification. 
Given these advantages, further validation is not strictly 
required. However, incorporating other validation steps 
at spatial and temporal levels in future studies would be 
beneficial where feasible. Another important point is the 
use of whole tissue samples, which contain multiple cell 
types, making it difficult to determine the specific cellu-
lar sources of differentially expressed genes. Bulk RNA 
expression profiling lacks spatial and cell-type resolution, 
and while we relied on known cell-type markers to infer 
cellular-level changes, we deliberately avoided strong 
cell-type-specific interpretations. To address this in 
future studies, methods like single-cell RNA sequencing 
can help to gain more refined cellular resolution. More-
over, techniques such as spatial transcriptomics, immu-
nofluorescence, or RNA in situ hybridization will allow a 
more precise localization of differentially expressed genes 
in specific cell populations. Also, integrating multi-omics 
approaches (e.g., proteomics, epigenomics) alongside 
transcriptomics could further enhance our understand-
ing of the regulatory mechanisms driving maturation 
processes.

Another potential limitation of comparing vgll3*EE 
males and vgll3*EE females at this late immature stage is 
that observed gene expression differences may be influ-
enced by both genotype and early transcriptional changes 
preceding the onset of maturation. Although we spe-
cifically selected EE males with GSI values close to 0 to 
minimize potential maturation effects, it is well estab-
lished that gene expression differences can occur before 
phenotypic changes become apparent [20, 22, 26]. While 
none of the males in this study exhibited external signs 
of sexual maturation, such as gonadal development, col-
oration, or behavioral changes, we acknowledge that 
entry into puberty is a distinct process that may begin 
at lower GSI values before external markers become 
visible. Studies on Atlantic salmon have demonstrated 
that puberty onset can occur even at GSI values as low 
as 0.05–0.1%, characterized by increased plasma levels 
of 11-ketotestosterone, Fshb protein production by the 
pituitary, spermatogonial proliferation, and Sertoli cell 
activation [44, 112–118]. Given this, we cannot rule out 
the possibility that some males in our study, despite their 
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low GSI values, may have already initiated puberty at the 
molecular and cellular levels. Thus, the possibility that 
some gene expression differences reflect early molecular 
changes associated with the onset of maturation rather 
than genotype alone cannot be ruled out. To address this 
in future studies, a developmental time series including 
both sexes across multiple stages (e.g., from early to late 
immature stages, as well as the maturing stage) would 
provide a better temporal overview of transcriptional 
changes. Such an approach would help distinguish gen-
otype-driven differences from maturation-related signals 
and reduce potential confounding effects. Furthermore, 
to precisely confirm the gonadal developmental stage 
and, more specifically, to determine the potential entry 
into puberty, further characterization should be included. 
This would involve histological analysis to assess germ 
cell stages, proliferation, and differentiation activity [44, 
112–114], along with plasma sex steroid and gonadotro-
pins measurements along with GSI values [44, 115–118]. 
These combined approaches would provide a more com-
prehensive assessment of the transition from the imma-
ture stage to the initiation of puberty.

Perspectives and significance
The findings of this study shed light on fundamental bio-
logical processes with broad implications across fields 
such as developmental biology, endocrinology, and aqua-
culture science. By uncovering sex-specific interactions 
between lipid metabolism, brain signaling, and the Hippo 
pathway, this research emphasizes the complex interplay 
between genetic and physiological factors in determining 
sexual maturation timing. These insights extend beyond 
Atlantic salmon, offering a framework for understand-
ing how energy allocation strategies may evolve differ-
ently between sexes in other species. The discovery of 
sex-based differences in lipid storage and central sensing 
mechanisms also raises intriguing questions about the 
broader roles of the Hippo pathway in regulating meta-
bolic and developmental traits. From an applied perspec-
tive, this knowledge could inform strategies to optimize 
growth and reproduction in aquaculture, while con-
tributing to evolutionary models of energy trade-offs in 
sexual development. Future work may explore the trans-
lational potential of these mechanisms in other taxa and 
investigate their implications for broader ecological and 
conservation challenges.

Conclusions
This study provides significant molecular evidence link-
ing Hippo pathway to sex specific differences in the brain 
and adipose tissue, which may explain how male sexual 

maturation often occurs earlier in Atlantic salmon. Our 
results suggest that females may have higher adipogenesis 
and lower energy expenditure (lipolysis capacity) compared 
to males, likely due to sex-specific interactions between 
PKA and Hippo signaling pathways. In males, increased 
expression of lipolysis markers in adipose tissue may result 
in greater energy release, which is sensed in the brain. We 
also found Hippo-dependent differences in expression of 
genes encoding tight junction proteins, potentially contrib-
uting to greater brain permeability in males. This increased 
lipid release and potential changes in the brain perme-
ability may underlie sex differences in central lipid sensing 
process, influencing sex-specific pubertal timing. However, 
further detailed functional assessments are necessary to 
validate these suggested differences.
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