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Abstract 

Sexual dimorphism is a fundamental characteristic of the anatomy and physiology of animals and humans, 
yet biomedical research has largely ignored these phenomena in the study of health and disease, despite early studies 
in the eighteenth and nineteenth centuries that demonstrated the importance of sex differences. With the explosive 
growth of biomedical research following World War II, especially in the 1970s through the 1990s, preclinical 
and clinical studies led to a greater recognition of sex differences in physiological function, particularly the significant 
disparities in the incidence of and mortality from cardiovascular diseases, which generally occur more frequently 
in men than in premenopausal women. There is a growing awareness that metabolic and immune dysfunction are 
intimately tied to the development of cardiovascular diseases. Thus, this review article focuses on sexual dimorphism 
in cardiovascular, metabolic, and immune function in health and disease, and was prepared for the journal Biology 
of Sex Differences as part of its recognition of “Sex Differences in Health Awareness Day.” This article clearly reveals 
the striking importance of sex differences in cardiovascular, metabolic, and immune system functions in health 
and in the pathogenesis of disease processes, which likely involve a combination of effects of the sex chromosomes 
as well as the gonadal steroid hormones. In the developing fetus, fetal sex clearly influences the pathogenesis 
of the hypertensive diseases of pregnancy, and sex differences in the effects of the fetus continue beyond pregnancy 
and appear to influence the future risk of maternal cardiometabolic diseases. Similarly, there is strong evidence 
of many clinically-relevant sexually dimorphic characteristics of obesity and type 2 diabetes mellitus which appear 
to involve both chromosomal and humoral effects, although the underlying pathophysiological mechanisms 
are poorly understood. The gonadal steroid hormones (both androgens and estrogens) are known to exert 
important effects on the regulation of intermediary metabolism; however, recent studies reveal the emerging 
importance of these hormones in the regulation of inflammation. For example, menopausal declines in estrogen are 
associated with increases in inflammatory markers and the development of heart failure in women. Similar effects 
on inflammatory function may also occur in men with progressive age-dependent declines in testosterone. Declines 
in androgen levels in men are also associated with detrimental effects on cardiovascular and metabolic function, 
especially the development of metabolic syndrome and type 2 diabetes, important risk factors for cardiovascular 
disease. Interestingly, pathophysiological increases in the normally lower testosterone levels in women are associated 
with the same detrimental effects on cardiovascular and metabolic function, revealing striking bi-directional sex 
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A. Introduction
John N. Stallone, PhD, FAPS
Sexual dimorphism is a fundamental characteristic of 
the anatomy and physiology of animals and humans, yet 
biomedical research has largely ignored these phenomena 
in the study of health and disease, despite very early 
studies that demonstrated the importance of these sex 
differences. For example, the testes in roosters (but not 
hens) were associated with humorally-mediated effects 
on the anatomy, behavior and reproductive function in 
the eighteenth and nineteenth century studies of Hunter 
and Berthold [1, 2]. Similarly, associations between 
androgen excess and diabetes, obesity, and infertility 
in women (but not men) have been known since the 
report of “diabetes in bearded women” by Achard and 
Thiers in 1921 [3]. Subsequently, a link between obesity 
and the triad of polycystic ovaries, hirsutism, and oligo/
amenorrhea was first reported in 1935 as the Stein-
Leventhal Syndrome, which was later renamed polycystic 
ovary syndrome [4]. Collectively, these early studies 
established sex differences in the effects of androgens, 
which appeared to be beneficial in males, but deleterious 
in females; however, these sexual dimorphisms in 
physiological function were largely ignored until the 
explosive growth of biomedical research in the 1970s 
through 1990s. These preclinical and clinical studies led 
to a greater recognition of sex differences in physiological 
function, particularly the significant disparities in 
the incidence of and mortality from cardiovascular 
disease, which occur more frequently in men than in 
premenopausal women (Fig. 1) [5–10].

What factor(s) underlie(s) the sex differences in form 
and function observed in animals and humans and how 
do sex and gender differ? Sex, as defined by the Institute 
of Medicine [11], is “being male or female, according 
to reproductive organs and the functions assigned by 
the chromosomal complement (i.e., XX for female and 
XY for male)” and the effects of the gonadal steroid 
hormones. Clearly, sex is a biological characteristic 
that is dichotomous in nature in the physiological  state. 
In contrast, gender is a psychosocial construct that 
is a continuous variable and includes factors such 

as age, behavior, culture, ethnicity, and education. It 
should be noted that there are congenital abnormalities 
(DSD: Disorders of Sex Development) in which the 
individual may exhibit a combination of male and female 
characteristics. From a biological and experimental 
standpoint then, every cell has a sex, as determined by the 
complement of the sex chromosomes and in the intact 
organism, by the effects of the gonadal steroid hormones. 
It is not surprising then, to see sexual dimorphisms in 
cardiovascular, metabolic, and immune function which 
are present in health as well as disease states.

Although human epidemiological studies on 
cardiovascular disease in the 1980s led to an increased 
awareness of sex differences in cardiovascular and 
metabolic function, it was not until the passage of the 
National Institutes of Health (NIH) Revitalization Act 
of 1993 that federally-funded research was mandated to 
include women in human clinical trials. These human 
clinical and epidemiological studies led to an increase 
in preclinical animal studies that that identified sexual 
dimorphism in systemic blood pressure and isolated 
vascular function in normal and hypertensive animals 
[12–16]. As a result of this growing awareness of sex 
differences in cardiovascular and metabolic health and 
disease, the Institute of Medicine issued a landmark 
report in 2001 entitled “Exploring the Biological 
Contribution of Sex”, which concluded that sex matters 
in all aspects of cellular function and physiology from 
“womb to tomb” [11]. In May, 2014, nearly 20 years after 
the passage of the NIH Revitalization Act that required 
inclusion of women in clinical research, Francis S. Collins 
(NIH Director) and Janine A. Clayton (Director of the 
Office of Research on Women’s Health) announced the 
intention of NIH to address over-reliance on male cells 
and animals in preclinical biomedical research [17]. 
This decision arose from the growing number of studies 
reporting sex differences in physiological function and 
the realization that over-use of male cells and animals 
in preclinical studies could bias their translation to 
improvements in human health and disease, resulting in 
adverse effects on women’s health. Thus, taking sex of 
research animals into account as an important biological 

differences in the effects of the androgens. Finally, it is increasingly apparent that the kidney plays an important 
role in the regulation of sex steroid hormone levels, and the declines in both estrogen and testosterone that occur 
with chronic kidney disease appear to play an important role in the linkage between chronic kidney disease 
and the development of cardiovascular disease. In conclusion. It is clear that sex differences in cardiovascular, 
metabolic, and immune function play important roles in health and in the pathogenesis of disease. Elucidation 
of the chromosomal and humoral mechanisms underlying sexual dimorphism in physiological functions will play 
important roles in the future development of age- and sex-specific prevention and pharmacotherapy of disease 
processes.
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variable could improve the reproducibility and value 
of research results [18–20]. Following this decision, all 
future applications to NIH were required to include 
plans to balance the use of male and female cells and 
animals in all preclinical studies (except for rigorously 
defined exceptions). While this requirement led to an 
increase in preclinical studies revealing sex differences in 
cardiovascular, metabolic, and immune function highly 
relevant to health and the pathogenesis of disease, the 
number of published studies examining these differences 
remains relatively small.

Despite these forward strides in preclinical research, 
translation to improvements in clinical care still lags 
behind. For example, cardiovascular diseases in women 
are still underdiagnosed, undertreated, and understudied 
[21] and as a result, women die from coronary artery 
disease at twice the rate of men [22]. There is growing 
awareness that metabolic and immune dysfunction are 
intimately tied to the development of cardiovascular 
diseases [23]. Thus, in this review article prepared for the 
journal Biology of Sex Differences as part of its recognition 
of “Sex Differences in Health Awareness Day”, the breadth 
and depth of sexual dimorphism in cardiovascular, 

metabolic, and immune function and their roles in health 
and the pathogenesis of disease will be discussed with the 
goal of increasing reader awareness of the importance 
of biological sex in the incidence of and mortality from 
cardiovascular, metabolic, and immune diseases.

B. The contribution of fetal sex to cardio‑metabolic 
complications in pregnancy
Lana McClements, PhD, MPharm
Characteristics of hypertensive disorders in pregnancy
Hypertensive disorders of pregnancy (HDP) affect 5–10% 
of pregnancies and are among the leading causes of 
maternal and fetal morbidity and mortality worldwide 
[24]. They encompass a spectrum of conditions, including 
chronic hypertension (HT), white coat HT, gestational 
HT, preeclampsia, and superimposed preeclampsia (and 
related disorders: eclampsia and HELLP [haemolysis, 
elevated liver enzymes, and low platelets] syndrome) [25, 
26]. Chronic HT is detected either prior to pregnancy or 
before 20 weeks of gestation whereas gestational HT and 
preeclampsia are diagnosed from 20 weeks of gestation. 
Chronic HT can lead to preeclampsia, condition referred 
to superimposed preeclampsia [27]. White coat HT 

Fig. 1  The impact of sex differences begins in utero when chromosomal differences and higher inflammatory environment of the male fetus play 
a key role. These sex differences continue through childhood and increase with the appearance of the gonadal steroid sex hormones at puberty 
and into adulthood, with the female sex being more prone to increased adiposity and sex differences in cardiometabolic disease phenotypes 
and outcomes with increasing age
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is defined as elevated blood pressure (BP) in clinical 
settings, in the presence of a healthcare professional, 
while maintaining normal BP in non-clinical settings [26]. 
However, white coat HT early in pregnancy is reported 
to progress to gestational HT and in 8% of cases 
preeclampsia [28]. Gestational HT is considered a new 
onset or de novo HT (sustained systolic BP ≥ 140 mmHg 
and diastolic BP ≥ 90  mmHg) in pregnancy without the 
presence of proteinuria or other type of organ damage 
typical for preeclampsia (e.g. neurological complications, 
pulmonary oedema, haematological complications, 
liver dysfunction, or acute kidney injury) [29]. It is 
expected that BP in pregnant individuals diagnosed 
with gestational HT will return to normal within 
three months post-partum  [26] Gestational HT can 
progress to preeclampsia especially in those individuals 
diagnosed early in pregnancy [30]. Although eclampsia 
(characterised by seizures) and HELLP syndrome are 
distinct disorders, these pregnancy complications often 
occur as a result of poorly managed preeclampsia. 
HELLP syndrome affects 0.5–0.9% of pregnancies and 
it is associated with placental dysfunction; it can lead to 
acute renal and liver failure, disseminated intravascular 
coagulopathy, and pulmonary oedema, requiring preterm 
birth in the vast majority of the cases (> 70%)  [26]. 
Eclampsia is characterized by the onset of one or more 
seizures in individuals with preeclampsia. It remains a 
significant concern in developing countries, responsible 
for an estimated 50,000 deaths annually, accounting for 
around 10% of direct maternal fatalities [24].

HDP can lead to severe short-term and long-
term complications for both the mother and fetus. 
The highest number of deaths due to HDP has been 
recorded in Latin America and Caribbean [24]. In the 
short term, maternal complications include preterm 
labour, placental abruption, pulmonary oedema, renal 
failure, and eclampsia, which can result in seizures and 
life-threatening complications. For the fetus, restricted 
placental blood flow increases the risk of intrauterine 
growth restriction (IUGR), preterm birth, neonatal 
intensive care unit admission, and perinatal mortality 
[31, 32].

Long-term complications extend well beyond 
pregnancy. Women with a history of HDP are at 
a significantly higher risk of developing chronic 
HT, cardiovascular disease, and stroke later in life. 
Overlapping biomarkers and pathogenic pathways have 
been identified between preeclampsia, HT, and heart 
failure with preserved ejection fraction [33]. In the 
period of the first ten years following HDP, individuals 
have three- to ten-fold increased risk of developing HT 
[34]. Additionally, they have an increased likelihood of 
recurrent hypertensive complications in subsequent 

pregnancies. Offspring exposed to maternal HT in 
utero may also face long-term health risks, including 
a higher predisposition to metabolic syndrome, HT, 
and cardiovascular disease in adulthood [35, 36]. These 
complications highlight the importance of continued 
monitoring and preventive care for both mothers and 
their children following HDP.

Pathogenesis of preeclampsia
Amongst HDP, preeclampsia remains the leading 
cause of maternal and fetal morbidity and mortality 
worldwide [32]. Preeclampsia is a heterogenous 
and multifactorial disorder that includes different 
phenotypes based on the gestational age of diagnosis: 
early-onset preeclampsia (< 34  weeks of gestation), 
late-onset preeclampsia (≥ 34  weeks of gestations), 
and post-partum preeclampsia (up to 6  weeks post-
delivery). Preterm and term preeclampsia are also used 
when referring to delivery before 37  weeks and from 
37  weeks of gestation, respectively [26]. Early-onset 
preeclampsia has features of placental insufficiency due 
to inadequate spiral uterine artery remodelling by fetal 
trophoblast cells leading to poor villous development 
whereas late-onset preeclampsia has normal 
placentation with features of overcrowded villous space 
leading to increased feto-placental demand [32, 37]. In 
the second stage of preeclampsia development, both 
phenotypes are characterised by angiogenic imbalance, 
endothelial dysfunction, oxidative stress, and 
inflammation [38]. Women with pre-gestational type I 
or II diabetes mellitus or gestational diabetes mellitus 
have increased risk of developing preeclampsia, which 
is linked to pre-existing hyperglycaemia-induced 
endothelial dysfunction, increased inflammation, and 
oxidative stress [39].

The largest meta-analysis to date including over 
ten million participants has shown that individuals 
affected by preeclampsia in pregnancy have over two-
fold increased risk of composite adverse cardiovascular 
outcomes (odds ratio [OR], 2.05 (95% CI, 1.9–2.3) 
compared to individuals with normal pregnancies. In this 
group, the risk of death due to cardiovascular disease was 
reported to be more than two-fold ([OR] 2.18 (95% CI 
1.79–2.66), the risk of renal impairment over three-fold 
([OR] 3.35, 95% CI 2.25–5.00), and four-fold higher risk 
of metabolic syndrome ([OR] 4.05, 95% CI 2.42–6.77) [26, 
40]. Interestingly, individuals who suffered early-onset 
preeclampsia compared to late-onset preeclampsia, in 
pregnancy, had ~ 1.5–1.7 fold higher risk of composite 
adverse cardiovascular outcome, renal impairment, and 
metabolic syndrome and over five-fold increased risk of 
major cardiovascular events [40]. 
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Fetal sex and pregnancy
During pregnancy, a tightly regulated balance is 
maintained between the maternal innate immune 
cells and placental cells towards a tolerance of a semi-
allogeneic fetus and placenta [41]. This is regulated 
by restricted expression of class Ia and class II human 
leukocyte antigens (HLAs) in trophoblast cells  [42]. 
When the balance is disrupted and innate immune cells 
are inappropriately activated, inadequate function of the 
trophoblasts cells and placentation follow, causing the 
development of preeclampsia, more commonly early-
onset preeclampsia. This process is characterised by 
elevated inflammation where pro-inflammatory factors 
including tumour necrosis factor (TNF)-α, interleukin 
(IL)-6 and IL-1β are increased and anti-inflammatory 
factors, IL-10, reduced [43].

Fetal sex differences play an important role in 
pregnancy maintenance and outcomes. For example, 
male fetuses tend to be larger at 20  weeks of gestation 
and beyond and have worse birth outcomes than female 
fetuses  [44]. Interestingly, male offspring also exhibit 
significant differences in body composition, with higher 
percentages of both fat and lean mass, which appear to 
be more susceptible to the maternal influence of elevated 
body mass index and weight gain during pregnancy [45]. 
Furthermore, the male fetus exhibits a more pro-
inflammatory immune response throughout gestation. A 
study comparing pro-inflammatory and pro-angiogenic 
factors between individuals carrying male vs. female 
fetuses from uncomplicated pregnancies demonstrated 
higher concentrations of granulocyte colony-stimulating 
factor (G-CSF), IL-12p70, IL-21, IL-33, placental growth 
factor (PlGF), and vascular endothelial growth factor 
(VEGF)-A in male fetuses across the gestation [46]. The 
presence of a female fetus was associated with higher 
systemic concentrations of regulatory cytokines including 
IL-5, IL-9, IL-17, and IL-25, whereas no differences were 
observed in the post-partum measurements between 
male and female offspring in any of these analytes [46]. 
A male fetus appears to be at a higher risk of infection, 
preterm birth, and fetal mortality  [47]. Pregnant 
individuals carrying a male fetus appear exhibit an 
increased risk of pregnancy complications including 
gestational diabetes, fetal macrosomia, premature 
rupture of membranes, Caesarian section and other birth 
complications [48].

The mechanisms underlying the aforementioned sex 
differences are likely related to sex chromosomes (XX vs. 
XY) and sex steroid hormones (androgens, progesterone 
and estrogens), which are produced by both sexes 
however in varying amounts; circulating testosterone 
in females is 10–15% that of male whereas estrogen in 
male is 10–30% that of male [49]. During pregnancy, 

there is a transiently higher production of testosterone 
at the beginning of the second trimester which can 
influence the sex-specific pregnancy outcomes  [50]. 
No sex differences in estriol and estradiol levels have 
been detected between male and female fetuses [51]. 
Furthermore, in estrogen-deficient mice no differences 
were found in placental and fetal growth suggesting 
estrogen is not the underlying mechanism of sex 
differences in pregnancy [52]. Nevertheless, estradiol has 
important roles in angiogenesis, placental development 
and vascular adaptations in pregnancy which are 
processes aberrantly regulated in preeclampsia in 
associated with lower maternal circulating estradiol [53]. 

Fetal sex and HDPs
Although there is conflicting evidence related to 
the impact of fetal sex on the risk of HDP including 
preeclampsia, some sex differences have been reported 
[54]. As stated above, a male fetus can increase the 
maternal risk of developing gestational diabetes which, 
subsequently, is a risk factor for preeclampsia [55]. This 
association between the presence of a male fetus and 
gestational diabetes has been attributed to impaired 
maternal β-cell function and higher blood glucose, 
suggesting that male sex can impact glucose metabolism 
adversely in pregnancy [56] .

Interestingly, a meta-analysis including 11 studies with 
219,575 independent live-born singleton pregnancies, 
demonstrated that the influence of fetal sex is dependent 
on the gestational age, where a female fetus was 
associated with a higher incidence of early-onset and 
preterm preeclampsia, whereas no sex differences 
were reported in the incidence of term preeclampsia. 
Similarly, another study reported the importance of 
fetal sex in uteroplacental and cardiovascular adaptation 
across gestation; thus, uterine artery Doppler showed 
higher pulsatility index and notching in pregnant 
individuals with a male fetus in the second and third 
trimester, indicating the presence of vascular resistance. 
In a subgroup analysis, the presence of a female fetus in 
pregnant individuals with pre-eclampsia, fetal growth 
restriction and/or spontaneous preterm birth (collective 
referred to as a placental syndrome), was associated with 
higher diastolic BP in the first trimester. Nevertheless, 
later in gestation, there was a change in the diastolic BP 
pattern between pregnancies with a female or a male 
fetus, where the presence of a male fetus led to higher 
diastolic BP readings [57]. Interestingly, a recent meta-
analysis including > 100,000 participants reported overall 
higher systolic and diastolic BP in pregnancies with a 
male fetus compared to a female fetus, which was not 
attributed to a fetal birth weight genetic score [58].
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Furthermore, a study comparing proliferative 
capacity of trophoblasts in placental villi from 
individuals with preeclampsia and normotensive 
controls, revealed that there was an increase in 
the percentage of proliferative compared to non-
proliferative trophoblast cells in female placental 
villi from preeclampsia, which was associated 
with excessive syncytiotrophoblast shedding. No 
difference was observed between male placentas from 
preeclampsia compared to normal pregnancies [59]. 
These differences between male and female placental 
morphology in preeclampsia, characterised by 
excessive syncytiotrophoblast shedding and potentially 
increased cell-free fetal DNA in maternal blood  [60], 
are likely associated with increased maternal 
inflammation that could lead to poorer pregnancy 
outcomes.

Some of the mechanisms proposed to explain sex 
differences in preeclampsia with impaired placentation 
include lower human chorionic gonadotrophin (hCG) 
in a male placenta of the first trimester, likely inhibited 
by the higher progesterone levels present in the male 
placenta, impacting negatively on implantation [61]. In 
pregnancy, hCG also has an important role in utero-
placental angiogenesis and maternal immune system 
regulation [62].

As described above, strong epidemiological evidence 
exists between preeclampsia and future increased risk 
of cardio-metabolic diseases, however the mechanisms 
of this association are poorly understood. Some of 
the overlapping signalling pathways reported include 
those related to inflammation [(IL-6, IL-1, IL-8, 
C-reactive protein (CRP), monocyte chemoattractant 
protein-1 (MCP-1) and TNF-α], metabolism 
[dipeptidyl peptidase 4, insulin growth factor (IGF)1, 
IGFBP-1, insulin, lipocalin 2, leptin] and angiogenesis/
vascular remodelling (TGF-β, Galectin-3, VEGF, 
endoglin, collagen group proteins and MMPs) [33]  . 
Although there is plethora of evidence to suggest 
that fetal sex plays an important role in pregnancy 
and HDP, the importance of sex differences continues 
beyond pregnancy. As pregnancy is a full challenge 
for the female body, these underlying cardiovascular 
risks could be manifested through the occurrence 
of HDP. Pregnancy also represents a good window 
of opportunity for intervention and prevention of 
both short- and long-term cardiovascular disease. 
Therefore, developing and implementing personalised 
sex-specific fetal monitoring and treatment strategies 
for preeclampsia will ensure safe delivery of the baby 
and prevent death and future morbidities in both 
mothers and their offspring.
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C. Obesity, type 2 diabetes, and cardiometabolic 
diseases
Alexandra Kautzky‑Willer, MD
The prevalence of both obesity and type 2 diabetes 
mellitus (T2DM) is dramatically increasing worldwide 
in men and women, but men are usually diagnosed at 
a lower body fat mass and at younger age than women 
[63]. This may be caused by the greater visceral and liver 
fat mass and lower peripheral insulin sensitivity in males 
compared to females [64]. Thus, overall more men than 
women are diagnosed with diabetes, although obesity 
is more common in women at least in some cultures 
and regions [65]. The presence of two X chromosomes 
has been associated with greater adiposity, possibly 
through enhanced expression of genes involved in weight 
gain which escape X chromosome inactivation [66]. 
Menopause is linked to increased risk of weight gain 
due to a decrease of basal metabolic rate and energy 
expenditure and increased appetite associated with the 
loss of estrogen. BMI may underestimate body fat mass 
especially in postmenopausal women [67]; thus, a body 
composition phenotype defined as osteosarcopenic 
obesity affects up to 40% of postmenopausal women [68]. 
Sex differences in phenotypes and clinical outcomes of 
obesity and diabetes are caused by genetic, epigenetic, 
and hormonal influences in pathophysiology, clinical 
manifestation, diagnosis, and response to therapy. 
Across their lifetime, women experience greater 
cardiometabolic burden resulting from variations in sex 
hormones, body fat distribution, and events related to 
reproduction [69]. Moreover, gender differences arising 
from psycho-sociocultural processes and environment, 
such as different behaviours, lifestyles (especially 
nutrition and physical activity), and attitudes towards 
prevention and therapy, also impact the development 
and progression of both obesity and T2DM. In addition, 
the lifelong continuous interactions between biology and 
environment start in utero, finally resulting in clinical 
differences between boys and girls and men and women. 
Both fetal malnutrition and excess nutrition impact the 
risk of obesity and T2DM and their complications in later 
life of the offspring with sexually dimorphic effects [65, 
70].

Women appear to be protected from cardiometabolic 
disease by their sex hormones until menopause, but 
with the loss of estrogen their risk of disturbances in 
glucose and lipid metabolism increase, together with 
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a higher risk of subclinical inflammation leading to an 
increase in cardiovascular risk factors [71]. Women 
also bear a greater risk factor burden at the time of 
diagnosis of prediabetes or diabetes compared to men, 
especially obesity and hypertension [63, 69].   Moreover, 
socioeconomic factors, education, and psychosocial 
stress might play a more prominent role in diabetes 
risk in women. Pregnancies can unmask preexisting 
subclinical metabolic abnormalities, leading to diagnosis 
of gestational diabetes, which is the most prominent risk 
factor for progression to T2DM in women. In addition, 
the number of women with undiagnosed or diagnosed 
T2DM at reproductive age is increasing. Pregnancy 
planning and prepregnancy care is challenging in 
women with pregestational diabetes putting the women 
and their offspring at jeopardy of acute and long-term 
complications.

Cardiovascular complications are the leading cause of 
death in people with obesity and T2DM with important 
differences between men and women: Although the 
absolute risk for cardiovascular mortality is higher in 
men with diabetes, its relative risk is much greater in 
women with diabetes [63, 72, 73]. However more recent 
studies suggest comparable cardiovascular risk between 
both sexes [74], which is also supported by a recent 
mendelian randomisation analysis [75]. Atherosclerotic 
risk increases during menopausal transition associated 
with increases in insulin resistance, inflammation, 
endothelial dysfunction, dyslipidemia, and blood pressure 
and often further weight gain  [69]. Unfortunately 
cardiovascular risk is often underestimated in women 
with diabetes even in presence of additional risk factors 
[76]. Moreover women remain undertreated and less 
often attain their target values of important risk factors 
like LDL cholesterol, blood pressure, or HbA1c in many 
studies [63, 77]. Another problem is that they are still 
underrepresented in clinical trials on cardiovascular 
risk (CVOTs) and thus important results may be less 
evident for women. Although the cardiometabolic-
renal benefits of new drug classes like SGLT2 inhibitors, 
GLP-1 receptor analogues, or dual agonists appear to be 
present in both sexes [78], they are less often prescribed 
in women even if treatment is recommended according 
to guidelines because of concomitent heart failure, 
cardiovascular disease, or chronic kidney disease [79]. 
Heart failure especially with preserved ejection fraction is 
much more common in women with obesity or diabetes 
compared to their male counterparts [80]; thus, SGLT2 
inhibitors can clearly reduce disease burden and improve 
quality of life particularly in older women.

Of note, recent studies reveal that incretin mimetics 
induce even greater weight loss in women than men 
[81]. This could be ascribed to the effect of these drugs 

on reduction of emotional eating, but also other yet 
unknown sex specific biological factors could play a role.

In summary, there is evidence of numerous clinically 
relevant sex differences in obesity and diabetes; however, 
significant gaps remain in our understanding of the 
underlying pathophysiological mechanisms, hindering 
the development of sex-specific approaches to precision 
disease prevention and therapy.

D. Effects of biological sex in immunological 
aspects of cardiac disease
Georgios Kararigas, PhD
There is a growing body of data showing that immune 
responses play a major role in the development of cardiac 
disease. In fact, persistent inflammation is known to be 
detrimental to the heart [82–84]   and the inflammatory 
response might promote heart failure (HF) [85–88]. 
Notably, activation of the immune response and pro-
inflammatory factrso lead to the inhibition of cardiac 
contractility [82, 83]  . Impaired contractile function 
of the heart is a major risk factor for HF and sudden 
death. Importantly, the release of inflammatory factors 
from one point reaching another can lead to a systemic 
inflammatory state, thereby resulting in widespread 
dysfunction and/or injury in adjacent and distant organs, 
which is common to several cardiometabolic diseases and 
is also thought to underlie male-biased cardiovascular 
complications in COVID-19 [89–91].

In this context, significant differences between 
premenopausal women and men in inflammatory 
markers have been reported, while these differences 
were attenuated following menopause and in the absence 
of hormone therapy  [92]. Of even greater relevance, 
significant sex differences in the transcriptomic 
regulation of inflammatory genes and pathways in cardiac 
disease have been documented [93, 94]. In particular, 
in human pressure overload-induced left ventricular 
hypertrophy, it was shown that distinct molecular 
processes are regulated between men and women and 
that maladaptive cardiac remodeling occurring more 
frequently in men is associated with greater activation 
of inflammatory markers [94]. Along this line, analysis of 
human cardiomyocyte-specific gene regulation revealed 
that two inflammation-related genes were negatively 
related to cardiac function as assessed by ejection 
fraction, with this effect being male specific [93] .

In agreement with those findings in humans, studies 
employing experimental mice under pressure overload 
conditions applying the transverse aortic constriction 
(TAC) method have shown, among others, sex-biased 
regulation of inflammatory genes and pathways [95–97]. 
Interestingly, characterization of the transcriptomic 
response of the heart to pressure overload in female mice 
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lacking estrogen receptor (ER) β showed an increase in 
inflammatory genes and pathways, such as natural killer 
cell-mediated cytotoxicity and leukocyte transendothelial 
migration pathways [96], indicating that the sex steroid 
estrogen, along with its ERβ, may play an important role 
in the strict regulation of the inflammatory response.

To this end, menopause-related estrogen decline, which 
is thought to contribute to the development of HF with 
preserved ejection fraction (HFpEF) and target organ 
damage  [98, 99], is associated with elevated circulating 
inflammatory markers, such as tumor necrosis factor 
(TNF) α, interleukin 6 (IL-6) and plasminogen activator 
inhibitor-1 [100, 101]. Several of these inflammatory 
mediators, particularly the plasminogen system, have 
been implicated as common risk factors for COVID-19 
susceptibility [102]. In experimental animals, the removal 
of estrogen through primarily ovariectomy is also 
associated with increased levels of inflammation, while 
exogenous administration of estrogen attenuates these 
effects, thereby leading to decreased levels of circulatory 
cytokines, such as TNFα, IL-1β and IL-10 [103–105]. At 
the molecular level, estrogen exerts a repressive effect on 
the activity of nuclear factor kappa B (NFκB) by inhibiting 
its DNA binding ability, thereby down-regulating the 
activation of NFκB target genes, including TNFα and 
IL-6 [106, 107]. In addition, estrogen contributes to 
higher levels of high-density lipoprotein cholesterol and 
lower levels of low-density lipoprotein cholesterol [108, 
109], which might exert an anti-inflammatory effect.
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E. Sex differences in cardiovascular risk 
with chronic kidney disease
Sofia B. Ahmed, MD, MMSc
Cardiovascular-kidney-metabolic (CKM) health 
describes the closely intertwined relationships across 
metabolic risk factors, chronic kidney disease (CKD), 
and the cardiovascular system. Poor CKM health 
results in widespread pathophysiological effects, most 
notably the heightened risk of cardiovascular events and 
associated mortality. Kidney disease is a global epidemic 
[110].   As recently outlined by the American Heart 
Association, individuals living with CKD are amongst the 
highest risk populations for cardiovascular disease and 
mortality [111], with the risk increasing exponentially 
with CKD progression [112]. Of note, sex differences 
in cardiovascular disease (CVD) in CKM syndrome 
have been highlighted as a major gap in the scientific 

understanding of mechanisms of CVD development in 
CKM [113].

Sexual dimorphism in kidney structure and function
In general, male kidneys tend to be larger and heavier 
than female kidneys, with hypertrophy of the proximal 
tubules, a higher mitochondrial content, greater total 
nephron count, and distinct transporter expression [114, 
115]. In contrast, the glomeruli are notably larger in 
female children compared to age-matched male children 
[116].

Animal studies reveal that female kidneys excrete 
similar amounts of urinary sodium, but at a lower arterial 
pressure than males [117, 118]. The relative abundance 
of renal tubular transporters differ by sex [119]  which 
could potentially influence susceptibility to nephrotoxic 
exposures. For example, numbers of the primary 
transporter in the proximal renal tubule, the sodium/
hydrogen exchanger 3, are lower in females compared to 
males. In contrast, the abundance of the sodium/chloride 
co-transporter and epithelial sodium channel are higher 
in the distal segments of the renal tubule in female rats 
compared to males [120].

Sex hormones may have a significant impact on 
kidney development, potentially influencing long-
term kidney health [121–124]. For example, in female 
mice administered testosterone, the kidneys were of 
increased weight, mainly due to cortical thickening 
caused by hypertrophy in the glomeruli and convoluted 
tubules [124]. In nephrectomized rats, male remnant 
kidneys exhibited a much higher growth rate compared 
to that of female rats [121]. Although there may be a 
role for testosterone, monitoring renal mesangial cell 
proliferation showed no notable effect of testosterone, 
while estrogen had a modest impact on cell proliferation 
and reduced overall collagen synthesis [122] .

Sex differences in kidney disease
Studies of healthy populations suggest that men have 
faster age-related loss of estimated glomerular filtration 
rate (eGFR) than do women. However, observational 
studies have shown that while earlier stages of CKD (e.g., 
stage 1–2) are more common in males, primarily as a 
result of greater albuminuria, more advanced CKD (e.g., 
stages 3–5) is more prevalent in females overall [125]. 
Female individuals experience slower CKD progression 
compared to males [126], although this may be restricted 
to the premenopausal period [127]. Other studies suggest 
that neither female sex nor menopause is linked to any 
significant advantages or risks with respect to CKD 
progression  [128]. These conflicting results likely reflect 
differences in definitions of outcomes (e.g., receipt of 
dialysis, loss of estimated glomerular filtration rate 
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(eGFR), or reaching a pre-specified eGFR target), variable 
incorporation of sex-specific factors (e.g., complications 
of pregnancy, menopausal status, exposure to estrogen 
or testosterone hormonal therapy) and differences in 
lifestyle and environmental factors, including dietary 
and medication adherence, level of physical activity, 
socioeconomic position, and access to health care.

Sex differences in cardiovascular‑kidney‑metabolic syndrome
Using nationally representative National Health and 
Nutrition Examination Survey data (1988 to 2018) 
collected from 33,868 US adults, the sex-specific 
prevalence of CKM syndrome and sex-specific CKM 
associations with all-cause mortality were recently 
assessed [129]. While worsening CKM severity was 
associated with all-cause mortality for all participants, 
women, in contrast to men, demonstrated a lower 
incidence of CKM stage 3, but faced higher mortality 
risk throughout the range of multisystem CKM 
dysfunction. These results highlight the need to identify 
the mechanisms driving the combined cardiovascular, 
kidney, and metabolic system dysfunctions in order to 
reduce the potential for growing sex-based disparities in 
multiorgan disease risk.

Sex differences in cardiovascular risk with kidney disease: 
epidemiology
Sex differences in cardiovascular risk exist even in the 
pediatric population with CKD. While mortality in 
children with kidney failure is more than 30-fold higher 
than that of the general population [130], it is significantly 
higher in girls compared to boys (hazard ratio 1.36; 95% 
confidence interval 1.25–1.50), with cardiovascular 
complications representing the most common causes 
of death [131]. Despite declining overall mortality 
rates in children with functioning kidney transplants, 
the proportion of deaths due to cardiovascular causes 
remains unchanged and remains approximately 20% 
higher in girls [132]. Girls with advanced CKD are 
more prone to developing vascular stiffening than boys, 
which is in contrast to the physiological development 
demonstrated in healthy children; interestingly, this is 
independent of the cause of CKD [133]. Furthermore, 
these sex differences continue even after receipt of a 
kidney transplant and may contribute to the higher 
mortality rates observed in girls with kidney failure [133]. 
Studies in adult populations indicate that the female 
survival advantage observed in the general population is 
lost in the setting of kidney failure, with more years of life 
lost in female patients, who exhibit more excess deaths 
from cardiovascular disease irrespective of cause of CKD 
[134, 135].

A meta-analysis involving almost 100,000 participants 
with CKD revealed that men were at marginally higher 
risk of cardiovascular mortality than women among the 
CKD population, with borderline significance [136]. 
A pooled analysis of more than 2 million individuals 
revealed that men had higher cardiovascular and all-
cause mortality across all levels of estimated glomerular 
filtration rate (eGFR), though the risk of cardiovascular 
death increased more sharply in women as eGFR 
declined [128]. In the early stages of CKD, women face 
a lower cardiovascular risk than men, but this difference 
diminishes at lower eGFR levels [137]. For example, a 
Swedish study involving 30,000 CKD patients in stages 
3–5 reported that cardiovascular mortality was 20% 
higher in men than in women, but no sex differences were 
observed in stage 5 CKD non-dialysis-dependent patients 
[138]  These findings suggest that the protective effect of 
female sex on cardiovascular health diminishes as CKD 
progresses [136, 139–141]. It has been speculated that 
in women, more severe microvascular disease (rather 
than macrovascular disease), may contribute to the 
interaction between CKD stage and atheromatous and 
non-atheromatous outcomes [141]. Insulin resistance is 
a greater cardiovascular risk factor in women compared 
to men [142]. Although males are overall at higher CVD 
risk than females, this association is attenuated or even 
reversed in the setting of diabetes [143, 144]. Men are 
more likely to demonstrate impaired fasting glucose, 
while impaired glucose tolerance is more common 
among women [145]; whether this contributes to poorer 
cardiovascular outcomes in women is not clear.

Hypertension contributes not only to the development 
and progression of CKD but also to cardiovascular risk 
in both men and women [146].   Blood pressure is higher 
in men than women, although an accelerated age-related 
rise in blood pressure begins around the fifth decade of 
life in women [147]. Of note, increasing cardiovascular 
disease risk begins at lower thresholds of SBP for women 
than for men [148]. Salt-sensitive blood pressure, a 
cardiovascular risk factor, is more prevalent in women 
than in men, including during premenopause [149]. 
In an observational study of over 4000 participants, 
women demonstrated greater SBP changes compared to 
men in the setting of multiple types of metabolic stress 
(including decrements of eGFR), particularly in periods 
of transition from metabolic health to disease [150].

Gender-related factors may also play a role in sex 
differences in cardiovascular risk observed in men 
compared to women with CKD [151]. While men are 
more frequently prescribed angiotensin-converting 
enzyme inhibitors and statins [152, 153  , they also 
exhibit higher rates of behavioral cardiovascular risk 
factors that influence risk of CKD, such as smoking and 
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alcohol consumption, and are more likely to have poorer 
dietary habits. In contrast, women tend to adopt primary 
cardiovascular prevention strategies more readily than 
men [154]. Achievement of targets for cardiovascular 
risk factors including blood pressure control and LDL 
cholesterol control are reported to be less common in 
females than in males in the setting of CKD and diabetes 
[153, 155, 156].

Sex differences in cardiovascular pharmacologic therapy 
in kidney disease
There is a higher risk of adverse drug events with use of 
cardiovascular medications in women than men, which 
is likely due to sex-based differences in the absorption, 
distribution, metabolism, and excretion of drugs 
[157];  of note, these differences in pharmacokinetics 
and pharmacodynamics may be exacerbated in the 
setting of kidney disease [158, 159]. Pre-clinical research 
has suggested that sex-based differences in the renin–
angiotensin–aldosterone [160–162] and endothelin 
systems [163, 164] may influence the safety and efficacy 
of medications commonly used for treatment of both 
cardiovascular and kidney disease. This has borne out in 
humans: while the selective type-A endothelin receptor 
antagonist atrasentan slowed progression of CKD in 
individuals with type 2 diabetes, there was greater 
kidney protection in female than in male participants, 
but also more heart failure events in female than in 
male participants [165]. In a post-hoc analysis of the 
Angiotensin II Antagonist Losartan Study and Irbesartan 
type II Diabetic Nephropathy Trial results examining 
the effects of angiotensin receptor blockers (ARBs) on 
kidney outcomes in participants with type 2 diabetes, 
the beneficial effects of ARBs were similar in male 
and female participants for the kidney outcome, but 
cardiovascular risk was only lowered in male but not in 
female participants [166]. These data suggest that sex-
specific dosing regimens may be considered to optimize 
cardiovascular treatment in the setting of CKD.

The impact of sex hormones on cardiovascular risk in kidney 
disease
The kidney plays a critical role in regulating sex hormones 
[167]. In individuals with CKD, there is a significant 
disruption of the hypothalamic–pituitary–testicular axis, 
which appears to become more pronounced as kidney 
function deteriorates. The hormonal profile in women 
with CKD typically includes elevated levels of LH and 
PRL, reduced AMH, and a substantial decrease in serum 
estrogen [168]. Men with CKD have similar disturbances 
in hormonal profile, although with a reduced serum 
concentration of testosterone rather than estrogen [169].

Two systematic reviews and meta-analyses 
investigating links between sex hormones and the risk 
of cardiovascular disease and mortality reported that 
lower total testosterone concentrations were associated 
with an increased risk of cardiovascular events and all-
cause mortality in men with CKD [170, 171]. Due to 
a lack of published data, the authors were not able to 
comment on the relationship between testosterone and 
these outcomes in women with CKD [171]. The impact 
of testosterone supplementation on cardiovascular 
outcomes in persons with CKD is unknown.

Two studies have explored the connection between 
circulating estradiol concentrations and the risk of 
cardiovascular and all-cause mortality in women with 
CKD. One study reported a U-shaped relationship 
between serum estradiol concentrations and the risk 
of cardiovascular [HR 5.13 (1.29–20.3) and 4.21 (1.17–
15.1)] and all-cause mortality [HR 4.49 (1.59–12.6) and 
4.32 (1.59–11.7)] in postmenopausal women undergoing 
hemodialysis, with those in the lowest and highest 
serum estradiol concentration tertiles showing the 
highest risk [172].   Another cohort study reported that 
higher estradiol levels were associated with an increased 
risk of all-cause, but not cardiovascular mortality in 
premenopausal and postmenopausal-aged women 
with kidney failure undergoing hemodialysis [HR 1.86 
(1.14–3.01) [173]. A systematic review on the effects of 
postmenopausal hormone therapy on cardiovascular 
outcomes in women with CKD indicated that while no 
studies have included cardiovascular events or mortality, 
hormone therapy was associated with increased HDL 
cholesterol and decreased LDL cholesterol levels [174].

E. Sexual dimorphism in the cardiovascular 
and metabolic effects of the androgens
John N. Stallone, PhD, FAPS
Introduction
The male sex steroid hormones (testosterone (TES) 
and related C19 androgen molecules) are the humoral 
messengers responsible for the differentiation, 
development, and maintenance of the male reproductive 
system and secondary sexual characteristics that differ 
so markedly between males and females. Although 
the anatomical, behavioral, and reproductive effects of 
TES were recognized in animal experiments as early as 
the eighteenth and nineteenth century (long before its 
chemical structure as the principal mammalian male 
sex hormone of testicular origin was identified in 1935) 
[175, 176], it is now clearly recognized that the androgens 
exert a broad variety of physiologically relevant effects 
on the regulation of cardiovascular, hematopoietic, 
immune, metabolic, and nervous systems as well as 
their well-known anabolic effects on bone and skeletal 
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muscle [177, 178]. It is important to recognize that the 
androgens are synthesized in both sexes and circulate in 
the plasma, albeit at quite different levels. Plasma levels 
of TES in females are 5–10% of those in males; however 
it is increasingly recognized that the androgens play 
unique roles in the regulation of reproductive as well as 
cardiovascular, metabolic, and other functions in females 
as well as males [177, 178].

Sex differences in the cardiovascular effects of androgens
Cardiovascular diseases (CVD) are a major cause of 
morbidity and mortality and in the Western world, 
one-third of all deaths are attributable to CVD [179]. 
A conspicuous feature of this healthcare epidemic 
is that most forms of CVD are higher in men than 
in premenopausal women, yet the reasons for these 
prominent sex differences remain unclear. The clinical 
case studies and epidemiological observations that 
hypertension (HT) and coronary artery disease (CAD) 
occur more frequently in men than in premenopausal 
women [180–186]  have led to the dogmatic view that 
TES and other androgens exert deleterious effects on 
the heart and vasculature and worsen the development 
of CVD in men, in part by exacerbating risk factors such 
as blood pressure (BP), body fat composition, insulin 
resistance, and serum lipid profiles [187–189]. In parallel, 
earlier animal studies provided support for this dogma 
and revealed that in various rat models of HT castration 
attenuates the development of HT in males [190–194]. 
However, more recent human clinical trials [195–197] 
and experimental animal studies  [198–201]   reveal that 
TES and its metabolites exert beneficial effects on BP and 
metabolic function in males, which are risk factors for 
CVD. Reconciliation of the conflict between earlier and 
more recent studies on the cardiovascular effects of TES 
depends upon careful scrutiny of earlier experimental 
animal and human studies which suffered from flaws 
or limitations in experimental design and/or the animal 
models employed  [184, 186, 196]. For example, most 
earlier animal studies employed unrealistic models 
and short term settings. Similarly, subsequent analyses 
of earlier human clinical and epidemiological studies 
revealed important validity issues with experimental 
design, data collection and analysis, and selective 
exclusion of data, which emphasize the importance of 
careful study design and that dogma and controversy 
can adversely distort the validity of human clinical and 
epidemiological findings concerning TES (for detailed 
review of these issues, see [202]).

Human clinical and experimental animal studies 
have clearly established that TES and other androgen 
metabolites exert beneficial effects by inducing relaxation 
of vascular smooth muscle (VSM) through rapid, 

nongenomic (androgen receptor (AR)-independent) 
mechanisms in  vitro (for recent reviews, see  [203–
205]. Although this acute effect of TES and other 
androgens was initially reported at high (micromolar) 
concentrations in variety of large arteries from several 
species, more recent studies revealed that TES produced 
relaxation of smaller resistance arteries and arterioles 
at nanomolar (physiological) concentrations (i.e., 
mesenteric, prostatic, pulmonary, and subcutaneous) (for 
reviews, see [202–205]. The key mechanism underlying 
this effect of TES on VSM appears to be activation of 
calcium-dependent (BKCa) and voltage-operated (KV) 
K+ channels via TES-induced activation of neuronal 
nitric oxide synthase (nNOS) and/or inactivation 
of L-type voltage-operated Ca2+ channels in VSM 
[204, 205]. Although numerous studies have clearly 
established that TES and other androgens exert rapid, 
nongenomic vasorelaxing effects in  vitro, evidence that 
TES produces coronary or systemic vasodilation in vivo 
at physiological concentrations (100  pM to 100  nM) 
is more limited. Studies in anesthetized dogs  [206], 
pigs [207] and humans [208] demonstrated that intra-
arterial infusions of TES produces coronary vasodilation, 
and regional vasodilation of mesenteric, renal, and 
skeletal muscle vascular beds in anesthetized pigs [207]. 
More recently, several studies reported that TES and 
other androgens produced systemic vasodilation. In 
conscious, ganglionic-blocked male Sprague–Dawley 
(SD) rats, i.v. infusion of TES or its genomically inactive 
metabolite 5β-dihydrotestosterone (5β-DHT) produced 
dose-dependent systemic hypotension [198]. Similarly, 
bolus i.v. injections of TES, 5β-DHT, and the potent 
genomically active metabolite 5α-DHT produced dose-
dependent hypotension in Spontaneously Hypertensive 
(SHR) and to a lesser extent in normotensive-control 
WKY male rats  [199]. In both studies, the hypotensive 
effect of 5β-DHT was more efficacious than that of 
TES. While these recent studies clearly reveal that 
exogenous TES and its metabolites exert important 
hypotensive effects on systemic BP through direct 
vasodilatory actions on the systemic vasculature, the role 
of endogenous androgens in the long-term regulation 
of BP remained unanswered until recently. Long-term 
studies by Perusquia et al. [200] revealed that castration 
of both Wistar and WKY male rats led to the progressive 
development of HT over a period of 11 weeks that then 
plateaued through 18  weeks (151 ± 2 vs. 110 ± 2  mmHg 
at baseline, mean arterial BP). Subsequent long-term 
studies by Hanson et  al. [201]. demonstrated that 
castration of male SD rats produced progressive HT 
from 109 ± 3 at baseline to 143 ± 3 mmHg systolic BP at 
10 weeks, and that subsequent TES replacement therapy 
to physiological levels completely normalized BP in 
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5 weeks to 113 ± 1.3 mmHg. Interestingly, nearly identical 
effects of castration and TES replacement were observed 
in AR-deficient Testicular-feminized male (Tfm) rats, 
strongly suggesting that the cardiovascular effects of 
TES are nongenomic in nature. Treatment of SD rats 
with the type 1 angiotensin receptor antagonist Losartan 
completely prevented development of HT. rt-PCR of the 
kidney revealed that castration increased expression of 
mRNA for renin (92%), angiotensin converting enzyme 
(58%), and angiotensin type 1 receptor (80%), while 
TES replacement therapy completely normalized renin-
angiotensin system (RAS) mRNA expression to levels of 
intact control male rats. These findings reveal that both 
endogenous and exogenous TES exert anti-hypertensive 
effects that appear to involve reductions in RAS 
expression in the kidney, enhanced fluid excretion, and 
enhanced systemic vasodilation.

The overwhelming majority of studies on the 
cardiovascular effects of the androgens in experimental 
animals, and to a lesser extent in human clinical trials, 
have employed males. However, given that measurable 
levels of TES and other androgens are present in the 
circulation of female animals and humans, then it is also 
important that the effects of these hormones be studied 
in females. Studies of the acute effects of TES on blood 
vessels isolated from females, while limited in number, 
have uniformly revealed that TES-induces vasorelaxation 
of rat aorta, human pulmonary artery and vein, and 
isolated, perfused human lung do not differ between 
males and females [209–211]. Similarly, acute intra-
arterial infusions of TES in anesthetized pigs produced 
similar regional vasodilation in females as in males [207]. 
In near-term normal-pregnant and preeclamptic-
pregnant female Wistar rats, bolus i.v. injections of 
TES, 5α-DHT, 5β-DHT, and dehydroepiandrosterone 
(DHEA) produced similar substantial reductions in mean 
arterial BP in both groups, while 5β-DHT and DHEA 
exhibited significantly greater hypotensive potency 
than TES or 5α-DHT [212]. Isolated thoracic aortae 
from these same pregnant groups also exhibited similar 
vasorelaxing responses to these same androgens. With 
regard to long-term effects of TES treatment on vascular 
function and BP, several studies have examined effects 
in female animals and humans. Long-term treatment of 
female Cynomologous monkeys with TES while fed a 
high fat diet increased coronary arterial atherosclerotic 
plaques but improved vasomotor responses to 
acetylcholine [213].   In contrast, long-term treatment of 
ovariectomized female SHR rats with TES for 5–10 weeks 
increased arterial BP to levels similar to those of male 
SHR [190, 214]. Although not a goal of this study, this 
experimental design served as a model to test the effects 
of cross-sex hormone replacement in female-to-male 

transexuals, and resulted in similar detrimental effects 
as long-term TES treatment in human female-to-male 
transexuals, which impaired flow-mediated vasodilation 
[215]. Similarly, several prospective human clinical 
trials identified positive relationships between plasma 
free (bioavailable) TES levels and incidences of elevated 
BP, HT, and CAD in pre- and post-menopausal women 
[216–218]. While these human studies appear to conflict 
with the majority of experimental animal studies on the 
vascular effects of TES, the former studies could not 
discern whether elevations in plasma TES followed or 
preceded the increases in BP, HT, and CAD in human 
females. Likewise, long-term treatment of females with 
doses of TES that elevated plasma levels to those of males 
likely produce very different cardiovascular effects than 
the much lower normal plasma levels of TES in females. 
Indeed this possibility in quite likely since male levels of 
TES in female animals are associated with detrimental 
metabolic effects, while the same levels in males produce 
beneficial metabolic effects (for detailed review of these 
issues, see [202]). In summary then, while acute vascular 
effects of TES and other androgens are clearly beneficial 
and similar in males and females, long-term systemic 
effects of the androgens may differ in males and females 
and are likely related to the pronounced sex differences 
in plasma levels of TES, as well as the distribution and 
numbers of receptors present in the target tissues.

Sex differences in the metabolic effects of androgens
The early eighteenth and nineteenth century experiments 
of Hunter and Berthold on roosters [175, 176]  and 
those of Brown-Sequard involving self-injection of 
aqueous extracts of dog and guinea pig testes (so-called 
organotherapy) [219] led to the recognition that a 
humoral substance from the testes (identified much later 
as TES in 1935) was responsible for beneficial effects not 
only on reproductive tract function, but also on overall 
vitality, physical strength, and intellectual capacity. As 
discussed above, earlier human epidemiological studies 
and clinical trials led to two key areas of study in the 
1960s that continue today, the effects of androgens on 
cardiovascular and metabolic health and disease. An 
extensive review of these earlier studies led Kalin and 
Zumoff [180] to conclude that androgens exerted direct 
detrimental effects on the atherogenic process in the 
coronary arteries, contributing to the development of 
CAD. This view reflects the long-known major influence 
of androgens on body fat composition, muscle mass, 
and bone density in the male [220, 221] and the idea 
that these hormones exerted detrimental effects on 
lipid metabolism (e.g., dyslipidemia), an important risk 
factor for CVD. This belief was furthered by clinical 
observations that the use of anabolic steroids by athletes 
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(synthetic derivatives of TES) to enhance muscular 
strength resulted in premature, higher incidences of HT, 
ventricular remodeling, and sudden cardiac death [222–
224].   However, more recent human epidemiological 
studies and clinical trials have challenged this dogmatic 
view and revealed that in addition to the well-known 
classical effects of TES on bone density and muscle 
mass, that it also plays a key beneficial role in the 
regulation of carbohydrate, fat, and protein metabolism 
and inflammation, and that TES deficiency is strongly 
associated with increased fat mass, hyperlipidemia, 
hypercholesterolemia, hyperglycemia, and insulin 
resistance, as well as elevated BP, the cluster of symptoms 
comprising metabolic syndrome (MetS) and type 2 
diabetes mellitus (T2DM). MetS and T2DM share a 
common etiology (central adiposity) and are central 
risk factors for CVD (for reviews see [202, 220, 221, 
225]).    Indeed, the link between hypogonadism and the 
development of visceral obesity, insulin resistance, and 
MetS in men has been well established by many recent 
studies (for review, see [226]).  

Human clinical and experimental animal studies 
have identified several key actions of TES in the male 
that promote glucose and lipid homeostasis, including: 
prevention of visceral fat accumulation (adipogenesis), 
improved insulin sensitivity in adipose, skeletal muscle, 
liver, and brain, central (hypothalamic) effects to enhance 
energy expenditure and leptin sensitivity, and regulation 
of pancreatic β-cell function to improve glucose 
tolerance and glucose-stimulated insulin secretion. These 
findings have led to a proposed mechanism of androgen 
actions to promote glucose and energy homeostasis via 
AR-mediated effects on adipose tissue, liver, pancreatic 
β-cells, skeletal muscle, and metabolic centers in the 
hypothalamus [226]. Interestingly, aromatization of 
TES to 17β-estradiol that interacts with the estrogen 
receptor (ER) appears to be at least partly responsible 
for preventing abdominal obesity; thus, both TES and 
estrogen appear to play important roles in the regulation 
of energy homeostasis in males.

The dramatic sexual dimorphism in the metabolic 
effects of androgens in men vs. women is reflected by the 
striking differences in body fat distribution and skeletal 
muscle mass observed between the sexes, which begin at 
birth and are enhanced greatly at puberty with the surges 
of sex steroid hormone secretion. Thus, men tend to have 
less total body fat but more abdominal adipose tissue (i.e., 
android distribution) and greater skeletal muscle mass, 
driven by the effects of TES. In contrast, women tend 
to have more total body fat distributed with a gluteal/
femoral and subcutaneous (i.e., gynoid) distribution and 
less skeletal muscle mass, driven by the metabolic actions 
of estrogen [227–229]. While estrogen in the female 

mediates the amount, deposition, and function of the 
metabolically safer gynoid body fat distribution, TES on 
the other hand drives the deposition and function of the 
more unfavorable abdominal adipose tissue in the male; 
however, this is metabolically compensated for by the 
anabolic effects of TES to increase lean tissue and skeletal 
muscle mass and function to impair adipogenesis.

While the role of TES in the regulation of metabolism 
in men and the impact of TES deficiency on the 
development of visceral obesity, insulin resistance, and 
the MetS is well established, the the role of androgens in 
the regulation of metabolism in females and the possible 
impact of abnormalities in TES levels on metabolic 
dysfunction in women has not been well studied [230], 
even though associations between androgen excess 
and diabetes, obesity, and infertility have been known 
for nearly a century. Indeed, the relationship between 
androgen excess and diabetes has been known since the 
report of “diabetes in bearded women” by Achard and 
Thiers in 1921 [231]. Similarly, the link between obesity 
and the clinical triad of polycystic ovaries, hirsutism, 
and oligo/amenorrhea was first reported in 1935 as the 
Stein-Leventhal Syndrom [232], which was later renamed 
as polycystic ovary syndrome (PCOS). Thus, exactly 
opposite of the situation in males, the coexistence of 
excess androgen levels with cardiovascular risk factors 
(i.e., dyslipidemia, insulin resistance, and obesity) and 
increased atherosclerosis  [233] that occur in PCOS 
has advanced the concept that excess androgens exert 
adverse effects in women [234, 235]. 

Likewise, other hyperandrogenic conditions in 
women such as congenital adrenal hyperplasia (CAH) 
and androgenized female-to-male transexuals are also 
associated with metabolic dysfunction, especially glucose 
intolerance, insulin resistance, obesity, and subsequently 
with T2DM [226]. Thus, the much lower levels of TES in 
normal women appear to exert beneficial effects, while 
the elevated androgen levels in pathophysiological states 
such as PCOS result in cardiovascular and metabolic 
dysfunction; however, this sexual dimorphism in the 
metabolic effects of androgens in males vs. females 
is puzzling and poorly understood [236, 237]. The 
aforementioned observations have led to the concept that 
a delicate equilibrium exists between androgen effects 
on adipose tissue vs. skeletal muscle that underpins 
the metabolic phenotype seen with androgen excess in 
females vs. androgen deficiency in males. This concept 
of overlapping adverse metabolic effects of androgen 
excess in women vs. androgen deficiency in men has been 
termed the “metabolic valley of death”  [236]  (for more 
detailed review, see [202]). 

The dramatic sexual dimorphism in the relationship 
between TES and metabolic function and the delicate 
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balance of androgen effects in adipose vs. skeletal 
muscle raises the question of what mechanism(s) 
underlie the disruption of the equilibrium in TES 
effects? Three major factors appear to be involved; 
namely, gonadal dysfunction, normal aging, 
and sedentary lifestyle. Thus, in the male, these 
disturbances lead to a deficiency of testicular androgen 
secretion, resulting in increased abdominal fat 
deposition, dyslipidemia, loss of skeletal muscle mass, 
increased insulin resistance, and development of MetS 
and T2DM. Conversely, in the female, age-dependent 
reductions in estrogen and relatively small increases in 
circulating androgens from PCOS or CAH (or larger 
increases with cross-sex hormone therapy in female-
to-male transexuals) lead not only to phenotypic 
masculinization, but also cause “masculinization” 
of adipose tissue and its conversion from gluteal/
subcutaneous fat to abdominal (visceral) fat deposition 
with the expression of pro-inflammatory cytokines 
similar that observed in males [238, 239].    It has 
been proposed that the excess TES and AR activation 
lead to deleterious effects on glucose, fat, and energy 
homeostasis, including: activation of adipose tissue 
(increased adiposity and inflammation), central 
(hypothalamic) effects to reduce energy expenditure 
and leptin sensitivity, activation of macrophages 
(oxidative stress), excess pancreatic β-cell function 
(insulin secretion), and skeletal muscle insensitivity to 
insulin. Together, these effects synergize to promote 
metabolic dysfunction, inflammation, visceral 
adiposity, and eventually, T2DM [226]. 

In summary then, the available data from both 
experimental animal and human studies reveal the 
existence of a bi-directional modulation of glucose and 
fat homeostasis in females vs. males. Thus, androgen 
or AR deficiency results in dramatic metabolic 
dysfunction in aging males, but to a much lesser extent 
in females. Since AR activation is weaker in females 
due to (normally) substantially lower circulating 
androgen levels and a much smaller population of AR 
in metabolic target tissues, TES and other androgens 
are less important in the maintenance of energy 
homeostasis in females under normal conditions; 
however, the elevated levels of androgens that occur 
with PCOS, CAH, or other pathological conditions 
are sufficient to result in metabolic dysfunction. 
Likewise, the substantial levels of TES resulting from 
cross-sex hormone therapy to masculinize female-
to-male transexuals likely produces significant 
metabolic dysfunction, increasing the risk factors for 
the development of HT and CVD, especially MetS and 
T2DM.

Physiological relevance and conclusions
It is increasingly apparent that endogenous TES and 
other androgens exert widespread beneficial effects on 
cardiovascular and metabolic functions. Recent human 
clinical trials over the last 10 years increasingly challenge 
the long-standing dogma that TES exerts detrimental 
effects on male cardiovascular and metabolic health and 
is largely responsible for the greater incidence of CVD in 
men than in women. Instead, it is now apparent that it 
is the gradual decline in circulating TES levels that are a 
normal part of the aging process that contributes to age-
dependent increases in CVD and metabolic dysfunction 
in men. In parallel, recent experimental animal studies 
reveal that castration of male rats results in long-term 
development of HT that is completely reversed by 
physiological TES replacement therapy (TRT). Further, 
clinical hypogonadism in aging men is associated with 
both HT and MetS, which exacerbate the development 
of CVD. While the most recent human clinical trials 
overwhelming report that TRT does not increase risk 
of CVD or mortality in older hypogonadal men and is 
associated with reductions in BP and MetS, these studies 
do not provide unequivocal evidence that TRT is safe 
and does not increase risk of cardiovascular events. 
However, it is also clear that some human studies suffer 
from poor experimental design and statistical analysis 
and investigator bias. Thus, unequivocal proof that TRT 
is safe and beneficial for the treatment of hypogonadism 
and associated cardiovascular and metabolic 
dysfunctions in men will require more better designed 
clinical trials. Similarly, our understanding of the role of 
androgens in female health and disease is still relatively 
limited and more studies are needed to elucidate the 
mechanisms underlying the striking sexual dimorphism 
in the cardiovascular and metabolic effects of TES.
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F. Conclusions and significance
The foregoing mini-reviews clearly reveal the striking 
importance of sex differences in cardiovascular, 
metabolic, and immune system functions in health 
and in the pathogenesis of disease processes, which 
likely involve a combination of effects of the sex 
chromosomes as well as the gonadal steroid hormones. 
It is noteworthy that these sex differences begin in the 
developing fetus, and that fetal sex clearly influences 
the pathogensis of the hypertensive diseases of 
pregnancy. Moreover, the differences in the effects of 
fetal sex continue beyond pregnancy and appears to 
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influence the future risk of maternal cardiometabolic 
diseases. Indeed, there is strong evidence of many 
clinically-relevant sexually dimorphic characteristics 
of obesity and T2DM. Again, there is evidence that 
both chromosomal and humoral effects underlie the 
significant sex differences observed in obesity and 
diabetes; however, the underlying pathophysiological 
mechanisms are poorly understood and await further 
clinical and experimental animal studies. The gonadal 
steroid hormones (both androgens and estrogens) are 
known to have important effects on the regulation 
of intermediary metabolism; however, recent studies 
reveal the emerging importance of these hormones 
in the regulation of inflammation. Clinical and 
experimental studies have shown that menopausal 
declines in estrogen are thought to contribute to 
the development of heart failure in women, and this 
has been associated with elevations in circulating 
inflammatory markers. Similar effects on inflammatory 
function may also occur in men with the progressive 
age-dependent declines in testosterone. While the 
androgens appear to exert beneficial cardiovascular 
and metabolic effects in men, their effects in women 
are poorly understood. The much lower levels of 
testosterone in normal women appear to exert 
similar effects on the regulation of glucose and lipid 
metabolism as the much higher levels in men. These 
effects appear to be bi-directional between the sexes, 
since pathophysiological increases in androgen levels 
in women are associated with the same metabolic 
disturbances observed with age-dependent declines 
in testosterone in men; namely, hypertension, 
metabolic syndrome, and type 2 diabetes mellitus. 
Finally, it is becoming increasingly apparent that the 
kidney plays an important role in the regulation of 
sex steroid hormone levels, which appear to decline 
with chronic kidney disease. The declines in both 
estrogen and testosterone have been associated with 
increases in cardiovascular risk factors; thus, these 
hormones appear to play a central role in the linkage 
between chronic kidney disease and the subsequent 
development of cardiovascular disease.

In conclusion, it is clear that sex differences in 
cardiovascular, metabolic, and immune function play 
important roles in health and in the pathogenesis of 
disease. Elucidation of the chromosomal and humoral 
mechanisms underlying the sexual dimorphism in 
physiological functions will play an important role 
in the future development of age- and sex-specific 
prevention and pharmacotherapy of disease processes.
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