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Abstract 

Bladder cancer (BC) remains a significant global health concern, with substantial sex and racial disparities in incidence, 
progression, and outcomes. BC is the sixth most common cancer among males and the seventeenth most common 
among females worldwide. Over 90% of BC cases are urothelial carcinoma (UC) with high degrees of pathological 
heterogeneity. Molecular subtyping of BC has also revealed distinct luminal, basal, and neuroendocrine subtypes, 
each with unique genetic and immune signatures. Emerging research uncovers the biasing effects of the sex hor‑
mones with androgens increasing BC risk through both tumor cell intrinsic and extrinsic mechanisms. The sex 
chromosomes, including both the X and Y chromosomes, also contribute to the sex differences in BC. The effect of sex 
chromosome is both independent from and synergistic with the effects of sex hormones. Loss of the Y chromosome 
is frequently observed in BC patients, while an extra copy of the X chromosome confers better protection against BC 
in females than in males. Advent of advanced technologies such as multiomics and artificial intelligence will likely 
further improve the understanding of sex differences in BC, which may ultimately lead to personalized preventative 
and treatment strategies depending on the biological sex of patients. This review delves into the impacts of biology 
of sex on BC, emphasizing the importance of further research into sex-specific biology to improve cancer prevention 
and care. 

Highlights 

1.	 Male sex constitutes the most significant independent risk factor for bladder cancer.
2.	 Sex as a biological variable consists of canonical (i.e., sex chromosomes and sex hormones) and non-canonical 

(e.g., epigenome, immunity, microbiota and metabolism) sex-biasing factors.
3.	 Precision medicine must integrate sex-dependent differences to improve diagnosis, treatment, and outcomes.
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Plain English summary 

Cancer strikes everyone but the odds differ among individuals. For reasons that are only partially understood, 
men are much more likely than women to develop cancers. For instance, BC is four times more frequent in males 
than in females. The purpose of this article is to review recent advancement how biology of sex impacts cancers, 
focusing on BC. The article reviews the roles of canonical or known sex-biasing factors including male- and female-
specific reproductive hormones and chromosomes, as well as emerging non-canonical sex-biasing factors such 
as immunity, metabolism, and commensal bacteria. We argue that a better understanding of these sex-biasing 
factors is needed to catalyze development of tailored strategies for men and women to improve cancer prevention, 
diagnosis, and therapy.

Keywords  Sex chromosomes, Sex hormones, Non-canonical sex-biasing factors, Urothelial carcinoma, Precision 
medicine

Introduction
One of the most enigmatic observations of cancer epi-
demiology is that cancer at the shared anatomic sites 
strikes males more frequently than females. The perva-
sive nature of male predominance in cancers has been 
demonstrated across racial, geographic and social eco-
nomic backgrounds, as well as in experimental cancer 
models, suggesting that biology of sex plays a central 
role in cancer. Bladder cancer (BC) is a prototypical 
sex-biased non-reproductive cancer type [1]. Incidence 
rate of BC is about four times higher in males than in 
females, and twice as high in white men compared to 
black, Hispanic, or Asian/pacific islander men [2]. In 
an experimental model of bladder carcinogenesis, male 
mice are over 13 times more likely than female mice to 
develop BC [3]. Worldwide, there were approximately 
614,298 new cases and over 220,596 deaths of BC in 
2022 [4, 5]. In the United States alone, there is an esti-
mated 83,190 new cases (approximately 63,070 in men 
and 20,120 in women) and about 16,840 deaths from 
BC (about 12,290 in men and 4550 in women), com-
prising about 4% of all cancers in 2024 [2]. Majorities 
of BC are urothelial cancer originated from bladder 
urothelium, which accounts for over 90% of all cases. 
Recent findings have highlighted fundamental biologi-
cal differences between male and female tumor cells 
and tumor microenvironment. However, advancement 
of basic research has not translated into any clinical 
practices as BC management remains largely the same 
for male and female patients.

Histologic and molecular pathology of bladder 
cancer
UC is categorized into two main groups based on clinical 
staging: non-muscle invasive BC (NMIBC) and muscle 
invasive BC (MIBC) [6]. Approximately 80% of BC cases 
are diagnosed as NMIBC. NMIBC is often considered an 
early-stage BC where the cancer cells are confined to the 
bladder’s inner lining, or urothelium, and have not spread 
into the deeper muscle layers, while MIBC are high-
grade tumors that invade the muscularis propria of the 
bladder, or beyond [6]. MIBC shows variable histological 
heterogeneity. There are multiple well established 
histologic subtypes of BC based on morphology (Table 1). 
Some of the histologic subtypes (micropapillary, 
plasmacytoid) have aggressive clinical courses compared 
to conventional BC [7]. Several approaches have been 
developed to define molecular subtypes of BC, evolving 
with 3 major molecular subtypes including luminal, 
basal, and neuroendocrine types [8, 9]. These molecular 
subtypes differ in molecular alterations, histomorphology 
and immune signatures. Luminal cancers harbor 
fibroblast growth factor receptor 3 (FGFR3) mutations 
and cyclin-dependent kinase inhibitor 2 A (CDKN2 A) 
losses whereas basal cancers are rich in tumor protein 
p53 (TP53) mutations and neuroendocrine cancers show 
concurrent mutations of TP53 and retinoblastoma (RB1) 
as seen in small cell neuroendocrine carcinomas [10]. 
Most of the basal cancers are histologically squamous 
bladder carcinomas whereas luminal cancers show 
various morphologies such as conventional invasive UC, 
micropapillary, nested or plasmacytoid morphology 
[8, 10]. Most common genetic alteration across all 
histologic subtype, grades and stages are telomerase 
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reverse transcriptase (TERT) promoter mutations [11–
13]. This finding is helpful for distinguishing deceptively 
bland UC subtypes such as nested carcinoma from 
its benign mimics and for differentiating small cell 
neuroendocrine carcinoma of bladder origin versus lung 
origin. Detection of TERT mutation in urine specimens 
is a useful biomarker for early detection and monitoring 
of recurrence [13]. BC tumor microenvironment (TME) 
involves immune cells and tumor-associated stromal 
cells. The molecular signature of the TME differs 
amongst molecular and histologic subtypes and obscure 
meaningful differences among different BC subtypes. The 
Lund system excludes TME signatures from molecular 
subtypes [11]. Differences in clinical outcomes relate to 
TME signatures as well as cell-cycle activity. Studies have 
shown that immune checkpoint inhibitors (ICI) response 
is seen in 50% patients with high tumor mutation burden, 
Programmed cell death ligand-1 (PD-L1) expression, 
and infiltration by cytotoxic T-cells without significant 
difference among different molecular subtypes, 
questioning clinical utility of molecular subtypes [14, 15].

The clinical utility of molecular subtyping for tri-
age of patients for neoadjuvant chemotherapy has been 
explored. Study of Lotan et al., [16] showed that neoad-
juvant platinum-based chemotherapy improves survival 
in patients with non-luminal subtypes of BC using Deci-
pher assay. Contradictory results were shown in a study 
by Sjödahl et al., in which genomically unstable cancers 
disproportionately benefited from cisplatin-based neoad-
juvant chemotherapy, using the Lund system [12]. These 
findings preclude interchangeability of different molecu-
lar systems used for molecular subtyping of BC but may 
help identify patients likely to respond to cisplatin based 
neoadjuvant chemotherapy.

Bladder cancer management
The most common presenting symptom of BC is hema-
turia. Microscopic hematuria is associated with a 2.7% 
risk of harboring BC or other genitourinary malignancy 
[17]. Gross (visible) hematuria is associated with UC at a 
rate of up to 20% [18]. Most cases of microscopic hema-
turia and all cases of gross hematuria should prompt 
evaluation of the lower urinary tract via cystoscopy (most 
often flexible cystoscopy in the outpatient clinical set-
ting) and evaluation of the upper urinary tract via imag-
ing (most often intravenous contrast enhanced CT scan 
with delayed imaging, or CT Urography) [19]. A total of 
78% of men directly consult a urologist, compared to only 
55% of women [20]. Women are more often misdiag-
nosed with urinary tract infections (UTI) and less likely 
to undergo imaging [21], potentially driving the sex-
based outcome disparities. Patients with a bladder mass 
suspicious for malignancy should be further managed 
with transurethral resection of bladder tumor (TURBT). 
This outpatient procedure under general anesthesia is 
performed for both diagnostic and therapeutic pur-
poses. The pathology result at TURBT will convey his-
tologic diagnosis, tumor grade, and tumor stage. At the 
time of TURBT, examination under anesthesia is often 
performed, as this also provides essential information 
regarding tumor stage. TURBT is therapeutic because 
many cases of NMIBC will not require surgical manage-
ment beyond a complete TURBT, excepting recurrence.

Management options for BC vary based on tumor 
and patient factors [19, 22, 23]. Low-grade NMIBC 
tumors, papillary or finger-like growths that rarely invade 
deeper bladder tissues, can be managed with cystoscopic 
surveillance. Intermediate-risk NMIBC sometimes also 
include intravesical chemotherapy or immunotherapy 
[24]. High-grade NMIBC, such as carcinoma in situ (CIS), 

Table 1  Histologic subtypes of bladder cancer

Histologic subtype Diagnostic criteria

Conventional urothelial carcinoma (UC) Invasive carcinoma with evidence of urothelial origin

UC with squamous differentiation Conventional UC with transition to squamous differentiation

UC with glandular differentiation Conventional UC with transition to glandular

UC with trophoblastic differentiation Conventional UC with syncytiotrophoblastic cells

Nested Nested architecture

Micropapillary Multiple small clusters within lacunar spaces

Plasmacytoid Single, dispersed plasmacytoid cells

Tubular and microcystic Cysts, macrocysts or large tubular structures

Lymphoepithelioma-like Syncytial clusters of UC within a polymorphic inflammatory infiltrate

Lipid-rich Cytoplasm with lipid vacuoles

Osteoclast-like giant cell rich High grade UC with osteoclast-like giant cells

Sarcomatoid UC with transition to spindle cell/sarcomatoid morphology

Poorly differentiated Poorly differentiated morphology
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often requires repeated TURBT 4–6 weeks after the 
initial procedure, as well as intravesical immunotherapy 
with Bacille-Calmette Guerin (BCG) [25]. Treatment 
options for localized MIBC (clinical grades: N0 M0) 
include radical cystectomy [26] or trimodal bladder 
preserving therapy (radical/maximal TURBT, systemic 
chemotherapy, and pelvic radiation therapy) [27]. Radical 
cystectomy includes total removal of the bladder (and 
prostate in males and sometimes uterus, ovaries, and 
anterior vaginal wall in females), in addition to removal 
of the bilateral pelvic lymph nodes [28], followed by 
urinary diversion. Urinary diversion typically repurposes 
a segment of ileum to construct an ileal conduit or 
orthotopic neobladder. For patients undergoing radical 
cystectomy, neoadjuvant chemotherapy meaningfully 
improves overall survival [29]. Metastatic BC can be 
treated with systemic chemotherapy [30], systemic 
immunotherapies [31–33], and most recently, antibody 
drug conjugates [34, 35]. A visual summary of the range 
of treatment options for the spectrum of BC is shown in 
Fig. 1.

Common BC treatments pose specific toxicities 
and risks to patients. For example, intravesical BCG 
is associated with a 75% incidence of irritative lower 
urinary tract symptoms and 1–2% risk of serious or 
septic infection [36–40]. Radical cystectomy is associated 
with a 50–60% complication rate and 3–4% risk of 
90-day mortality [41]. Systemic immunotherapies are 
typically better tolerated by patients than cytotoxic 

chemotherapies, yet intravenous ICI are associated with 
a 10–15% rate of serious adverse effects that include rash, 
pneumonitis, hypothyroidism, hepatitis, and colitis [31, 
33].

Intravesical recurrence is a hallmark of NMIBC, with 
high rates of tumor return following initial treatment. In 
select cases of NMIBC treated with BCG immunotherapy, 
the risk of recurrence over 3 years decreases significantly, 
from approximately 40 to 75% [25]. MIBC are potentially 
curable, with 60–65% of patients undergoing radical 
cystectomy (+/−neoadjuvant chemotherapy) alive and 
disease free 5  years after treatment [26–29]. Metastatic 
BC are generally thought to be incurable, but the recent 
advance of enfortumab vedotin antibody drug conjugate 
combined with pembrolizumab immune checkpoint 
inhibition has tremendously increased median 
overall survival (32 months) compared to systemic 
chemotherapy (16 months) [35]. Although the incidence 
of BC is strongly male-biased, in patients with high stage 
disease, survival outcomes are worse in females [1, 42, 
43], but the basis for this remains a debated issue [44].

Risk factors of bladder cancer
Biological sex
BC is associated with several risk factors, with sex as 
biological variable (SABV) playing a significant role in 
its incidence, progression, metastasis and treatment 
response [45–47]. Male sex consistently experiences 
an elevated risk in BC. Studies show that men are 2–4 

Fig. 1  Bladder cancer grade and stage determine treatment options available to patients. Individual patient factors, preferences, and physician 
recommendations influence the final therapy choice. BCG, Bacillus-Calmette Guerin intravesical immunotherapy. Immunotherapy on the lower 
right refers to systemic treatments such as immune checkpoint inhibitors. The class of systemic bladder cancer drugs known as antibody drug 
conjugates can be considered a hybrid of systemic chemotherapy/immunotherapy approaches
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times more likely to develop BC than women, even 
after adjusting for known risk factors like smoking, 
occupational exposures, and infections [48]. Beyond 
BC, sex differences extend to metastasis, immune 
responses, and treatment efficacy across multiple 
cancer types. Androgen signaling has been linked 
to worse cancer progression and therapy resistance, 
as seen in melanoma, where males exhibit impaired 
tumor control due to higher androgen receptor (AR) 
expression. Pharmacological inhibition of AR improves 
therapeutic response, emphasizing the critical role of sex 
hormones in cancer risk and treatment outcome [49]. 
In glioblastoma, tumor growth in males and females is 
driven by different pathways, with the cell cycle driving 
tumor progression in men and integrin signaling driving 
tumor progression in women, affecting chemotherapy 
response and underscoring the need for sex-specific 
treatment approaches [50]. These findings highlight 
the necessity of incorporating SABV in cancer research 
to develop more effective, sex-specific therapeutic 
strategies.

Cigarette smoking
Cigarette smoking is a major behavioral risk factor for 
cancers in many tissues, including lung and bladder 
[2, 51]. Cigarette smoking introduces carcinogens 
like aromatic amines and N-nitroso compounds [51]. 
Current smokers face a two to four times higher risk of 
BC compared to non-smokers, with former smokers at a 
threefold increased risk [51]. Previous Studies from 1995 
to 2006 estimated that tobacco use accounts for 50–65% 
of BC cases in men and 20–30% in women, reflecting 
higher smoking rates among men [52]. Recent findings 
suggest that the proportion of BC cases attributable 
to smoking has become comparable between men and 
women, nearing 50% for both sexes [51]. Smoking has 
been associated with poor outcomes in both NMIBC 
and MIBC cases after diagnosis [53]. Additionally, 
smoking is associated with poorer surgical outcomes, 
increased complications, reduced chemotherapy efficacy, 
and heightened recurrence risk [54–56]. Cigarettes 
contain over 60 known carcinogens including 4-ABP, 
2-naphthylamine, and polycyclic aromatic hydrocarbons 
which are known BC-causing agents [57, 58]. These 
carcinogens may cause inflammation, oxidative stress, 
DNA damage, and mutation of oncogenes and/or tumor 
suppressor genes to promote carcinogenesis [58–60]. 
Electronic cigarette smoking also induces DNA damage 
and inhibits DNA repair in the mouse lungs and bladder 
urothelium and developed bladder urothelial hyperplasia, 
indicating a potential bladder carcinogen in mice [61]. In 
addition to the established genotoxic effect of cigarette 

smoking, it may increase BC risk by eliciting chronic 
albeit sub-clinical immune suppression [62].

Occupational and environmental exposures to 
chemicals, especially in industries such as aluminum 
production, rubber manufacturing, dye and textile 
production, coal-tar pitch, and dry cleaning, further 
elevates risk through carcinogens like 2-naphthylamine, 
benzidine, 4-aminobiphenyl (4-ABP), polyaromatic 
hydrocarbons, 4,4′-methylene-bis(2-chloroaniline), 
and tetrachloroethylene [63]. Environmental 
exposures, including arsenic in drinking water, also 
significantly increase risk [64]. Furthermore, gene-
environment interactions play a crucial role, where 
genetic polymorphisms in detoxification genes, 
notably N-acetyltransferase 2 (NAT2) and Glutathione 
S-transferase Mu 1 (GSTM1) increases the risk of BC 
[65]. Individuals with GSTM1 null genotype had a 
significantly increased the overall risk of BC, and the 
NAT2 slow acetylator genotype increases risk particularly 
among cigarette smokers [65].

Infection
Schistosoma haematobium infection is another know risk 
factor of BC, and the World Health Organization clas-
sifies Schistosoma haematobium parasite as a group 1 
human carcinogen [66]. BC from Schistosoma haemato-
bium likely arises due to chronic inflammation and DNA 
damage from immune responses triggered by the para-
site’s eggs lodged in bladder tissue. Schistosoma haema-
tobium infects humans by directly penetrating the skin 
through aquatic cercariae, which emerge from Bulinus 
truncatus, the parasite’s intermediate snail host. Upon 
entering the human body, the parasite quickly migrates 
into the bloodstream in its schistosomulae form, matures, 
and eventually settles in the venous plexus of the bladder. 
There, male and female worms pair, mate, and produce 
eggs, continuing this cycle [67]. The half of those eggs 
are excreted in the urine. The remaining eggs become 
trapped in the bladder wall, ureters, and genital tract. The 
deposition of eggs triggers chronic inflammation, releas-
ing of growth factors and other biochemical substances 
such as N-nitroso compounds with carcinogenic effects 
and weakening the local immune system, allowing co-
infections that promote cancer [66, 68].

Unlike the parasite infection, the impact of UTI 
caused by uropathogenic bacteria on BC risk is less 
clear. BC shares several clinical symptoms with UTI, 
including painful urination, urgency, frequent urination, 
and hematuria [21, 69–75]. The study conducted by 
Vermeulen et al., reported in regular, low-grade UTI are 
associated with an elevated risk of BC, particularly in 
MIBC, with stronger effects observed in men (OR 6.6) 
than in women (OR 2.7). Interestingly, however, a smaller 
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number (fewer than 5) of UTI episodes treated with 
antibiotics in younger individuals seems to reduce BC 
risk. Additionally, postmenopausal UTI significantly raise 
the risk regardless of the number of infection episodes 
[76, 77]. Chronic or recurrent UTI can lead to persistent 
inflammation and damage to the bladder lining [78], 
potentially increasing the chances of mutation, which 
may increase the BC risk [79].

Molecular basis of sex differences in bladder cancer
Sex, a biological variable encoded in DNA, 
fundamentally shapes many aspects of development 
and diseases. In humans and other mammals, effects of 
the Y chromosome-encoded transcription factor Sex-
determining Region Y (SRY) instigate formation of the 
testes over ovaries, linking the chromosomal sex (XX vs. 
XY) to gonadal sex (ovary vs. testis) and hormonal milieu 
(estrogens vs. androgens) (Fig. 2). These generally aligned 
canonical sex-biasing variables, i.e., sex chromosomes, 
gonadal types, and sex hormones, are confounding 
variables, where effect of one may obscure or alter the 
effects of another. The canonical sex-biasing factors may 
directly contribute to cancer development. They may 
also indirectly impact cancer via other non-canonical 
sex-biasing factors, such as the epigenome, immunity, 
metabolism, and microbiome (Fig.  2). Together, 
sex-biasing effects of these biological variables may 
complement or amplify each other’s impacts on cancers 
[45].

Sex hormones
Sex hormones, including androgens and estrogens, play 
a crucial role in shaping the physiological and struc-
tural differences between males and females [80]. Their 
impact goes well beyond reproductive functions, as these 
hormones profoundly influence various physiology and 
pathophysiology, including cancers [81]. Research on sex 
steroid hormones and their receptors in BC has spanned 
nearly 50 years by various groups.

Androgens are a class of sex hormones predominantly 
synthesized by the testes, ovaries, and adrenal 
cortex, with elevated levels observed in males. These 
hormones are essential for the development of the male 
reproductive system [82]. The role of androgens and AR 
signaling in the pathogenesis of prostate cancer is well-
documented [83, 84]. Binding of testosterone, the most 
prevalent androgen, to the ligand-binding domain of 
the AR (NR3 C4; nuclear receptor subfamily 3, group C, 
member 4) induces a structural change that facilitates 
nuclear translocation of the receptor: ligand complex, 
where it initiates the transcription of a variety of target 
genes [84]. In 1972, androgens were first identified 
as a BC risk factor when castrated male mice were 

better protected against N-butyl-N-(4-hydroxybutyl) 
nitrosamine (BBN) than uncastrated males, and female 
mice treated with testosterone had increased BC risk 
compared to control female mice [85]. Further study also 
suggest that androgens promote BC development, while 
estrogens help to prevent it [86]. Additionally, clinical 
observations show that men who take drugs blocking 
androgens, like 5α-reductase inhibitors or DHT blockers, 
have lower BC death rates. This highlights the role of 
androgens in BC [87]. The next breakthrough came 
with the characterization of the AR and androgen-AR 
signaling. Laor et  al., showed that AR levels are higher 
in bladder tumors compared to normal tissue and are 
also higher in males than in females [88]. Mice with AR 
gene deletions (germline or urothelium-specific) show 
reduced susceptibility to BC when exposed to a bladder-
specific carcinogen [89, 90]. Consistently, overexpression 
of AR increases the susceptibility of BC during 
carcinogen exposure [91]. Genetic studies strongly 
showed that the AR plays a critical role in promoting 
BC. To understand whether urothelial AR (Uro-AR) 
has any role in promoting bladder tumorigenesis, Hsu 
et  al., generated conditional Uro-ARKO mice (Uro-
AR−/y) that lacked AR only in urothelium. They found 
that Uro-AR could promote bladder tumorigenesis by 
modulating the p21 protein—a key regulator of the cell 
cycle and DNA repair through the p53-PCNA signaling 
pathway [90]. However, Miyamoto et  al., demonstrated, 
AR and androgens do not always need each other to 
drive cancer growth. For instance, male mice without 
AR that were treated with the hormone DHT still 
developed BC 25% of the time, while untreated mice 
without AR did not develop cancer [92]. This suggests 
that androgens can promote BC through a pathway that 
does not involve AR. A recent study shows that DHT 
promotes BC cell proliferation and invasion via EPPK1-
mediated mitogen-activated protein kinase (MAPK)/
junction plakoglobin (JUP) signaling rather than AR 
[93]. Chen et al., identified a novel membrane AR (mAR-
SLC39 A9) that promotes BC through a noncanonical 
AR pathway involving Gαi/MAPK/MMP9 [94]. They also 
show that Cd24a-deficient C57BL/6 male mice develop 
fewer BBN-induced bladder tumors than untreated 
males. In addition to this, Cd24a-deficient male mice 
also had fewer metastases than wild-type counterparts. 
More interestingly, AR knockdown in UM-UC-3 and 
TCCSUP human UC cell lines resulted in suppression 
of CD24 expression and cell proliferation, and androgen 
treatment also led to increased CD24 promoter activity, 
dependent on the presence of androgen receptor. In vivo, 
androgen deprivation resulted in reduced growth and 
CD24 expression of UM-UC-3 xenografts, and the latter 
was rescued by exogenous CD24 overexpression [95]. 
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Intriguingly, AR directly suppresses the transcription 
of CD44, a receptor for hyaluronic acid and a strong 
marker for aggressive disease in various tumors [96]. This 
suggests that AR might play different roles depending on 
the stage of BC, potentially promoting tumor initiation 
but inhibiting progression.

A recent prospective study and meta-analysis have 
concluded that there is a greater risk of BC among 
nulliparous women and among women with early 
menopause, suggesting the protective effect of female 
sex hormones [97]. Preclinical models showed that 
ovariectomy increased the incidence of BBN-induced 
bladder tumors, compared to controls [86], while 
17β-estradiol treatment reduced tumor formation 
[98], suggesting the preventive effects of estrogens on 
UC growth. Estrogens primarily interacted with two 
canonical nuclear receptors known as ERα and ERβ. 

Each receptor can have unique roles, which may vary 
depending on the specific tissue type involved [99, 100]. 
Differential expression of ERα and ERβ in human BC 
suggests distinct roles in tumor development, with ERα 
likely inhibiting initiation and invasion [101] and ERβ 
promoting initiation and progression [102]. Hsu et  al., 
demonstrated that female mice lacking ERα develop 
tumors faster than those with functionally active ERα, 
indicating a possible tumor-suppressive role for ERα 
in cancer development [103]. However, ERβ shows 
increased expression in advanced-stage and higher-
grade BC, implying a role in tumor progression and 
metastasis. Indeed, deletion of ERβ led to reduction 
of tumor growth [104]; and Tamoxifen, a selective 
estrogen receptor modulator (SERM) that inhibits ER 
activity, provides chemoprevention against urothelial 
carcinogenesis in mice [105]. Estrogen signaling is also 
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mediated by the membrane-bound G protein-coupled 
estrogen receptor (GPER). GPER is involved in the rapid 
non-genomic actions of estrogen, involving downstream 
signaling pathways by inducing epidermal growth factor 
receptor (EGFR), MAPK, protein kinase A (PKA), and 
phosphoinositide 3-kinase (PI3 K) pathways [106]. 
Activation of GPER by estrogen suppressed bladder 
urothelial cell proliferation [107]. In addition, GPER 
is associated with the immunoregulatory function of 
estrogen. It has been shown that GPER is expressed 
in multiple immune cells, regulating their activation 
and life span. These include neutrophils, monocytes/
macrophages, B and T lymphocytes, as well as 
eosinophils, and neutrophils [108]. GPER may therefore 
modulate the TME that impacts tumor progression [108]. 
Collectively, estrogen plays a complex role in bladder 
tumor development via both the intrinsic and extrinsic 
mechanisms.

Progesterone (P4) is an endogenous steroid sex hor-
mone secreted by the ovary which regulates female 
reproductive functions [109]. P4 actions are mediated by 
two nuclear progesterone receptors (PR), progesterone 
receptor A (PR-A) and progesterone receptor B (PR-B) 
[110], which are transcribed from a single gene but from 
different promoters in response to estrogen. PR-B has 
an extra 164 amino acids at the N-terminus [111]. Non-
genomic actions of P4 are mediated by G protein-coupled 
PR on cell membranes [112]. PR expression is used as a 
biomarker of ER-α function. It has been shown that PRs 
are not only an ER-α-induced gene target but is also an 
ER-α-associated protein that modulates its activity [113]. 
Johnson and his coworker, using the UPII-SV40 trans-
genic model in which BC spontaneously develops, found 
that tumor size was significantly smaller in multiparous 
female mice than in nulliparous ones [114]. Consistently, 
it was also reported in humans that multiple pregnancies 
are associated with a decreased risk of BC [115]. It would 
be interesting to find out if progesterone acts on its own 
or works with the estrogen receptor (ER) to increase BC 
risk in women.

Sex chromosomes
In mammals, males and females have different sets 
of sex chromosomes: males have one X and one Y 
chromosome, while females have two X chromosomes. 
The Y chromosome encodes for a specific region known 
as “Sex-determining Region Y” (Sry), which triggers 
the development of the testes. The testes then release 
androgens that lead to male-specific physical traits. 
Historically, we have focused more on the role of sex 
hormones, with less attention given to the potential 
impact of sex chromosomes in explaining differences 
in BC between males and females. Emerging evidence 

suggests that the sex chromosomes directly contribute to 
differences in male and female BC biology independent 
from the effects of sex hormones [3, 116, 117]. A 2008 
epidemiological study revealed that individuals with 
Turner syndrome, phenotypic females who completely 
or partially lack one X chromosome (XO), had a higher 
risk of BC compared to XX females [118]. Furthermore, 
patients with Klinefelter syndrome, phenotypic males 
with one or more extra X chromosomes (e.g., XXY), 
exhibited a lower risk of solid tumors than XY males 
[119]. While these studies pointed to possible roles 
of sex chromosomes in cancer risk, they were largely 
correlative and did not isolate the independent effects of 
the X and Y chromosomes, as confounding factors like 
chronic UTI, fluctuating sex hormone levels, and other 
pre-existing health conditions that cannot be controlled 
for. To investigate the role of sex chromosomes (XX 
vs. XY) in BC risk, we employed age-matched “four-
core genotype (FCG)” mice [3, 116], comprising four 
distinct sex types: two with testes (either XX or XY 
chromosomes) and two with ovaries (either XX or 
XY chromosomes) [120]. This FCG model effectively 
separates the sex chromosome effect (SCE) from gonadal 
hormone effect (GHE), allowing for precise evaluation 
of both independent and interactive activities of these 
canonical sex-biased factors [120]. We administered 
BBN to the FCG mice and tracked BC development and 
overall survival outcomes. We found the Y chromosome 
does not confer the same level of protective effects 
against BC as the X chromosome does [3]. Moreover, 
cox proportional analysis has confirmed that the testis 
or androgen hormones independently contribute to 
sex-biased effects, with a hazard ratio of 4.714 (95% CI 
= 2.77–8.28). Additionally, the analysis revealed that the 
sex chromosome complements acts as a sex-biased risk 
factor independent of gonadal hormones, with a hazard 
ratio of 2.549 (95% CI = 1.55–4.28). Interestingly, an 
interaction was observed between gonadal hormone 
effects (GHE) and sex chromosome effects (SCE), as the 
combined hazard ratio for both factors was 12.39 (95% 
CI = 5.54–31.63), consistent with the product rather than 
the combination hazard ratio of SCE and GHE. These 
results suggest, for the first time, that SCE and GHE may 
interact synergistically to enhance sex differences in BC.

As we age, DNA damage naturally builds up in our 
cells, but our bodies have built-in tumor suppressor 
systems to keep tissues functioning normally and 
protect us from cancer. Interestingly, cancer rates 
increase faster with age in men than in women [121, 
122]. One possible reason for this difference could be 
the protective role of the X chromosome in women. 
The X chromosome carries several important genes that 
act as tumor suppressors, epigenetic regulators, and 
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interactors with the p53 pathway [123, 124]. Women, 
who have two X chromosomes, have a backup for these 
genes, which can help protect against mutations in one 
of the X chromosomes. About 15% of genes on the X 
chromosome escape a process called “X-inactivation,” 
meaning they stay active on both X chromosomes [125]. 
Some of these genes are involved in tumor suppression. 
If one X chromosome in a woman has a mutation in 
these genes, the second X chromosome can still provide 
a functional copy, which is protective. Men, with only 
one X chromosome, don’t have this backup, making them 
more vulnerable to mutations in these genes. Certain 
genes like Lysine demethylase 6 A (KDM6 A) also known 
as UTX (ubiquitously transcribed tetratricopeptide 
repeat on the X chromosome), ATRX (alpha-thalassemia 
mental retardation X-linked), and DDX3X (DEAD-
box helicase 3 X-linked), which play roles in preventing 
tumors, are often more mutated in male cancers [126]. 
KDM6 A likely has both catalytic and non-catalytic 
mechanisms through which it modulates the epigenetic 
landscape, and both activities appear to be important 
in its tumor suppressor activity through downstream 
effectors such as CDKN1 A and PERP [3].

It was reported that in men over 70, > 0% have a 
detectable loss of the Y chromosome, a condition known 
as mosaic loss of the Y chromosome (mLOY) [127]. 
mLOY can disrupt normal cellular functions, including 
cell cycle regulation, DNA repair, and apoptosis. These 
disruptions can contribute to cancer development and 
progression. Studies have shown that mLOY leukocytes 
are associated with an increased risk of cancer-related 
mortality [128]. mLOY might originate in cells with 
TP53 mutations and highly aneuploid tumors which 
are associated with genomic instability, however, in 
some cancers, mLOY does not always result from 
genomic instability [129]. It was shown that mLOY could 
contribute to the genomic instability using a murine 
model of BC [117]. mLOY could promote immune 
evasion by disrupting the T cell function and upregulating 
the expression of immune checkpoint molecules, such 
as CD274, LAG3, and HAVCR2, resulting in T cell 
exhaustion and increased susceptibility to PD-1-targeted 
immunotherapy which is an essential treatment for BC 
[117, 130]. The Y chromosome encodes few genes, and 
these genes are mostly expressed in the reproductive 
tissues. However, some of these genes are also expressed 
in nonreproductive tissues including cancer cells [131]. 
Two of the Y chromosome genes, KDM5D and UTY are 
associated with tumor suppression. KDM5D inhibited 
growth and progression of prostate and gastric cancers 
by demethylating H3 K4 me3 leading to the suppression 
of matrix metalloproteinases expression [132, 133]. It 
has been reported that UTY deficiency can promote 

the development and progression of BC [117]. Mosaic 
LOY in leukocytes being associated with increased 
cancer incidence suggests the possibility that mLOY 
regulates immunosurveillance and cancer cell-intrinsic 
biology [134]. It has been suggested that the association 
between LOY and disease risk depends on what type of 
leukocyte is affected with Y loss, with prostate cancer 
patients showing higher levels of mLOY in CD4+ T 
cells. mLOY in regulatory T cells (Tregs) influences their 
ability to regulate immune responses, leading to cancer 
progression by altering the TME and immunosurveillance 
[135, 136]. Just like cancer cells are more sensitive to 
chemotherapy than normal cells, we speculate that a 
patient’s nonmalignant blood cells with mLOY are more 
affected by cancer treatment compared to cells without 
mLOY. Taken together, this emerging field of Y cancer 
biology is an exciting area requiring further investigation 
to uncover the role and function of cells with LOY and 
the potential interactions between mLOY cancer cells 
and mLOY tumor-infiltrating immune cells within the 
context of cancer progression. Furthermore, LOY or 
specific Y-linked gene alterations when combined with 
yet to be detected features may be found to be novel 
and powerful biomarkers for cancer risk assessment 
and early detection in men. Understanding the role 
of Y chromosome genes in cancer may also lead to the 
development of targeted therapies whose specificity is 
related to genetic and molecular abnormalities associated 
with the Y chromosome.

Sex epigenome
Epigenetic regulation is crucial for genetic modulation 
and drives phenotypic diversity. The “sex epigenome” 
refers to sex-specific differences in gene regulation, post-
translations modifications and chromatin organizations 
that are modulated by canonical sex-biasing factors such 
as sex hormones and sex chromosomes. Epigenetic mod-
ifications such as methylation and acetylation on DNA 
and histones to control gene activity, either silencing or 
activating specific genes. This enables them to respond 
to biological and environmental changes. The sex epi-
genome theory posits that through time effects of the 
canonical sex-biasing factors result in the sex-specific 
epigenetic landscape, which independently contribute 
to sex differences in health and diseases. In cancer, the 
epigenome plays a key role, with epigenetic regulators 
and those regulators are frequently mutated in BC com-
pared to other solid tumors [137, 138]. Hypomethylation 
is typically linked to disease progression [139, 140]. For 
instance, hypomethylation of long interspersed nuclear 
elements-1 (LINE1) in peripheral blood-derived DNA 
has been associated with an increased risk of BC, par-
ticularly among female patients, who exhibit significantly 
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higher rates compared to males [141]. This LINE1 hypo-
methylation increases oxidative stress, promoting tumor 
progression, and can induce an alternate splice variant of 
the MET oncogene in bladder tumors [142, 143]. There-
fore, LINE1 hypomethylation contribute to the higher 
incidence of high-grade disease in female BC patients. 
Conversely, male patients more commonly exhibit DNA 
methylation of the DNA topoisomerase 2 beta (TOP2B) 
gene [144], although its role in BC remains unclear.

In the BBN treated mouse model of BC, XY males are 
12.39 times more likely than XX females to develop and 
die from BC. Our study has demonstrated, urothelium-
specific deletion of KDM6 A significantly elevated BC 
risk of females [3]. Moreover, we observed the deleting 
KDM6 A can significantly lowered the male-to-female 
BC risk ratio by over five times. This finding also suggests 
that KDM6 A acts as a tumor suppressor through both 
demethylase-dependent and demethylase-independent 
mechanisms and show a stronger protective role against 
BC in females. Our data has shown, KDM6 A promoted 
expression of known canonical TP53 gene targets such 
as CDKN1 A and PERP [3, 145]. Conversely, KDM6 A 
conditional knockout male mice did not have worse sur-
vival compared to their female counterparts. This may 
be due to the Y chromosome encoded UTY, a paralog of 
KDM6 A. UTY has been shown to have no or minimal 
demethylase activity [146, 147]. Nevertheless, UTY may 
compensate the loss or mutation of KDM6 A on the X 
chromosome in males. Polycomb repressive complex 2 
(PRC2) is involved in compacting the chromatin and con-
trolling gene expression. In bladder urothelium, enhancer 
of zeste homolog 2 (EZH2), the methyltransferase com-
ponent of PRC2, works in opposition to KDM6 A, cata-
lyzing addition of methyl groups to H3 K27 residues 
[148]. Since KDM6 A mutations are more common in 
women with NMI BC, future research should explore the 
use of EZH2 inhibitors to target KDM6 A-related path-
ways in female BC patients [149]. In conjunction with 
its demethylase role of KDM6 A, it interacts with COM-
PASS, a protein complex family that includes MLL3/
KMT2 C and MLL4/KMT2D [150]. Current evidence 
suggests that KDM6 A reduces tumor formation through 
two histone-modifying mechanisms: (1) counteracting 
PRC2-dependent gene repression by blocking H3 K27 
tri-methylation, and (2) supporting COMPASS-depend-
ent gene activation by enabling H3 K4 mono-methylation 
[151]. While the specific roles of PRC2 and COMPASS in 
influencing sex differences in BC are not yet confirmed, 
their varied and essential functions in development and 
cancer highlight their potential in addressing sex-related 
differences in BC development.

CD8+ and CD4+ T cells
CD8+ T cells, also known as cytotoxic T lymphocytes, are 
an important part of the adaptive immune system and are 
crucial components of the anti-tumor immune response. 
Through their T cell receptor, they can recognize tumor 
antigens and exert their cytolytic activity over their tar-
get cells [152]. In states of continuous antigen stimu-
lation, such as cancer, the CD8+ T cells progress into a 
state known as T cell exhaustion, in which the expres-
sion of inhibitory receptors on their surface attenuates 
the cytotoxic function [153, 154]. A growing body of lit-
erature has recently begun to uncover how CD8+ T cells 
contribute to sex disparities in bladder and other types 
of cancer [155]. The role of sex hormones, particularly 
androgens, as well as genetic factors, such as LOY, have 
emerged as important modulators of CD8+ T cell medi-
ated immune responses that influence cancer progres-
sion and response to therapy [156]. One of the intriguing 
aspects of CD8+ T cell function in cancer derives from 
the fact that AR is expressed not only in prostate tissues 
but also in specific subsets of CD8+ T cells [116, 157, 
158]. Androgen activity has been predicted to orches-
trate a complex transcriptional network involving sev-
eral transcription factors that shape the differentiation 
and function of CD8+ T cells in a male- or female-biased 
manner [116]. In the context of BC, it has been shown 
that androgen-mediated AR activity can promote T cell 
exhaustion, a state manifested with increased expression 
of inhibitory receptors on CD8+ T cells and decreased 
CD8+ T cell effector function [116]. Mechanistically, 
androgens have been found to bind directly to androgen 
response elements on the promoter of the transcription 
factor Tcf7 to positively regulate its transcription [116]. 
This is believed to account for the higher abundance of 
Tcf7+ progenitor exhausted CD8+ T cells in the TME in 
male mouse models of BC [116]. Other possible mecha-
nisms of androgen mediated CD8+ T cell suppression 
have been also reported, although not yet shown in BC 
[159]. Furthermore, LOY, a common genetic altera-
tion in male BC patients, was recently reported to have 
a profound effect on CD8+ T cell mediated antitumor 
responses [117]. By employing a syngeneic mouse model 
of MB49 murine bladder tumors where all cancer cells 
exhibit complete LOY, it was demonstrated that LOY 
enhances tumor growth in a T cell dependent manner, 
mainly through accumulation of exhausted CD8+ T cells 
within the tumor microenvironment. Interestingly, in the 
same preclinical studies, BC models with LOY responded 
better to immune checkpoint blockade (ICB) therapy 
[117]. The role of CD8+ T cell intrinsic LOY in BC has 
not been fully studied yet. Other sex related mechanisms 
that might be associated with altered CD8 T cell function 
include tumor mutational burden and neoantigen load 
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[160].These findings underscore the clinical relevance of 
the sex-specific differences in CD8+ T cell immunity, as 
a pathway to developing personalized and more effective 
treatment strategies for BC:

1.	 Targeting the androgen signaling pathway: thera-
peutic strategies that attenuating androgen signaling 
could enhance CD8+ T cell activity and improve anti-
tumor immunity. In preclinical models of BC, it has 
been shown that surgical or pharmacological castra-
tion can improve the response to ICB [116].

2.	 Utilizing biological sex or LOY as a biomarker: 
although some with conflicting results, there are 
studies showing that male patients respond better 
to ICB therapy in various tumor settings [161–163]. 
Furthermore, LOY has also emerged as a potential 
biomarker for predicting responses to ICB thera-
pies; LOY in tumor cells has been correlated with 
improved responses to anti-PD-L1 therapy in BC 
patients [117], suggesting its potential utility in guid-
ing treatment decisions.

Sex differences in CD8+ T cell immunity in BC is 
mainly known to be influenced by androgen signaling 
and genetic alterations like LOY, which contribute to the 
unique immune landscapes observed between males and 
females and affect disease progression and response to 
therapy. Advancing our understanding of these mecha-
nisms will be key to developing targeted therapies that 
improve outcomes for BC patients.

Cytotoxic CD4+ T cells are also gaining recognition 
as important players in anti-tumor immunity [164]. To 
understand the role of CD4+ T in BC, Oh et al., profiled 
CD8+ and CD4+ T cells from bladder tumors and adja-
cent tissues using single-cell RNAseq and TCRseq [165]. 
They observed minimal differences in CD8+ T cells across 
tumor and nonmalignant tissue, while CD4+ T cells 
showed unique cytotoxic and regulatory states within 
tumors. These CD4+ T cells can eliminate autologous 
tumors through an major histocompatibility complex 
(MHC) II-dependent mechanism [148]. Within tumors, 
multiple subsets of CD4+ T cells with cytotoxic func-
tions have been identified, specifically the CD4GZMB 
and CD4GZMK populations. The CD4GZMB subset is 
characterized by expression of cytotoxic molecules such 
as granzyme B (Gzm B), perforin, granulysin (Gnly), and 
natural killer cell granule protein 7 (NKG7). In contrast, 
the CD4GZMK subset expresses high levels of granzyme 
K (Gzm K) and lower levels of NKG7. Both cytotoxic 
subsets secrete substantial amounts of the anti-tumor 
cytokines interferon-gamma (IFN-γ) and tumor necro-
sis factor-alpha (TNFα), contributing to their tumor-
suppressive functions. These cytotoxic CD4+ T cells 

are capable of directly lysing tumor cells by recognizing 
antigens presented onMHC class II molecules expressed 
by tumor cells. However, their anti-tumor effects can be 
counteracted by CD4+ Tregs present within the tumor 
microenvironment, which may inhibit their cytotoxic 
function [165]. Research suggests a sex bias in CD4+ T 
cell-mediated immunity, with females typically exhibiting 
a higher proportion of CD4+ T cells than males, resulting 
in a more robust cell-mediated immune response [166]. 
This disparity is largely influenced by sex hormones, as 
estrogen tends to enhance immune function in females, 
while androgens have a suppressive effect in males [167]. 
However, the sex-biased effects of CD4+ T cell-mediated 
immunity in BC remain largely unexplored, indicating a 
potential area for further investigation.

Myeloid cells and myeloid‑derived suppressor cells
Myeloid cells in tumors include resident tissue mac-
rophages as well as infiltrating bone marrow-derived 
neutrophils, monocytes and dendritic cells, which can 
have a variety of pro- and anti-tumor functions [168, 
169]. Tumors can influence myeloid cell differentiation in 
the bone marrow and thus program myeloid cells to sup-
port their growth before they reach the tumor or exploit 
them to facilitate metastatic spread. Indeed, recent stud-
ies have shed new light on the origins of functionally dis-
tinct subsets of monocytes and neutrophils in the bone 
marrow [170, 171], and implicated distinct differentiation 
pathways in the production of monocyte and neutrophil 
subsets with pro- or anti-tumor properties [172, 173]. 
Sex differences and aging-associated changes can impact 
of all these processes. Macrophages have been reported 
to be the most sexually dimorphic immune cells, espe-
cially in their expression of type I interferon-stimulated 
genes (ISG) [174], which may promote anti-tumor immu-
nity. Notably, the single strand RNA (ssRNA) receptor 
TLR7 is encoded on the X chromosome and can escape 
X inactivation in female cells, resulting in higher TLR7 
expression [175]. Altered myeloid cell function during 
aging also likely contributes to cancer risk and treatment 
responses.

Myeloid-derived suppressor cells (MDSCs) are one 
of the major immune cell types that contribute to 
tumor-induced immune suppression and escape from 
immune elimination [172, 176]. MDSCs can be broadly 
divided into two main populations, polymorphonuclear- 
(PMN, also known as granulocytic, G−) and monocytic 
(M−) MDSCs [172, 176]. MDSCs exert potent 
immunosuppressive activities towards T cells and NK 
cells through a variety of mechanisms, including removal 
of arginine in the TME via expression of arginase 1 
(Arg1), production of reactive oxygen species, reactive 
nitrogen species and adenosine [172, 176]. MDSCs have 
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been found in a variety of human solid tumors [177, 178] 
including BC, and increased MDSCs levels in BC patients 
correlate with advanced disease stage and poor prognosis 
[179, 180]. Importantly, emerging evidence suggest 
that MDSCs contribute to resistance to anti-CTLA-4 
and anti-PD-1/L1 blockade [181]. High frequency of 
circulating MDSCs was found to be associated with poor 
responses to immune checkpoint therapies in melanoma 
[182], breast cancer [183] and prostate cancer [184]. 
Thus, targeting MDSCs represents an attractive approach 
to modulate tumor immunity for treating cancers and 
improve immune checkpoint blockade therapies [172, 
176]. The contribution of MDSCs to sex differences in 
BC has not been well defined. However, sex differences 
in MDSCs accumulation and function have been recently 
observed in other cancers [185].

Inflammatory cytokines
Inflammatory cytokines are important mediators of 
immunity and regulators of TME [186]. Expression 
of several cytokines is upregulated in tumor tissues 
in comparison with normal tissues in many cancers, 
including BC [187]. Cancer cells can further manipulate 
cytokine-inducing pathways such as CD14/TLR receptor 
pathway to increase cytokine production and benefit 
from pro-tumorigenic signals [188]. Non-targeted 
inhibition of chronic inflammation by non-steroidal anti-
inflammatory drugs targeting COX2 enzyme reduces BC 
risk and facilitates cancer cell death, indicating overall 
tumor-promoting role of inflammation within the BC 
microenvironment [189]. Levels of cytokines may also 
serve as biomarkers of prognosis and therapy resistance. 
Expression of several cytokines, such as IL-6, IL-1 or 
IL-10 can be further regulated in sex-dependent manner 
including by AR or ER signaling and transcription 
complexes such as selective AR modulators (SARM) and 
SERM [190, 191]. Overall, particularly due to patterns 
of various TLR expression, type I interferons and type 
2 cytokines (IL-4; IL-10) have female sex bias, while the 
induction of IL-6 and other TLR2/4 dependent cytokines 
has a male bias [192]. Furthermore, cytokines may play 
a role during tumor development and progression or be 
induced and act only in a context of therapy, for example 
chemotherapies, immunotherapies, or BC specific 
therapy with BCG. Interestingly, BCG therapy, which is 
often effective, nevertheless induces production of IL-6 
and IL-8, which are typically pro-tumorigenic [193, 194]. 
IL-4 and IL-10 represent “type 2” and immunoregulatory 
cytokines which correlates with poor prognosis and 
were mechanistically implicated into the development 
of various cancers. However, for BC the data is mostly 
correlational with these cytokines overproduced in 
tumor tissue and their potential correlation with disease 

relapse and progression [195, 196]. TGFβ pathway is 
instrumental for growth suppression of epithelial cells 
as well as for the establishment of immunosuppressive 
tissue and tumor microenvironment. Mutations in 
TGFβR genes as well as other components of TGFβ 
signaling pathway which render cells insensitive to the 
inhibitory effects of TGFβ are common in BC [197]. 
IL-6 promotes BC via activation of proto-oncogenic 
STAT3 [198] and also regulates invasive properties of 
BC cells [199], presumably by activating pro-survival 
and invasive gene expression program controlled by 
STAT3 in a context of various cancer. “Proof of principle” 
studies demonstrated feasibility of pharmacological 
neutralization of IL-6 pathway resulting in decreased 
BC growth [200]. The role of IL-17 in BC has also been 
established where inhibition of IL-17 further affected 
IL-6-STAT3 pathway and reduced tumorigenicity [201]. 
Interestingly, IL-17 is involved into resolution of chronic 
UTI [202] in a sex biased manner: its levels are higher in 
females and its production is repressed by testosterone. 
IL-17 therefore promotes resolution of infections and 
may be essential in preventing tumor initiating chronic 
inflammation. Interferons in general play robust role in 
anti-tumor defenses, regulating both proliferation and 
sensitivity to cell death for cancer cells, and boosting anti-
tumor immunity; participating in tumor surveillance and 
tumor immunoediting [203]. This sparked a considerable 
interest in these cytokines not only as a key mechanistic 
anti-tumorigenic entity, but also as a potential therapy. 
Direct therapeutic usage of interferons in cancer 
produced mixed results largely due to their systemic 
toxicity and side effects. Type I interferons IFN-α and 
IFN-β suppress BC via induction of innate and adaptive 
immune responses and may have additional direct anti-
tumor activities [204, 205]. Enforced expression of these 
cytokines either via viral delivery or potential activation 
of endogenous production was suggested as a potential 
therapeutic option in BCG-unresponsive BC [204, 205]. 
Type III interferons such as IFN-λ regulate macrophages 
in TME and inhibit BC progression [206] and may 
be considered as anti-cancer agents when delivered 
intratumorally. IFN-γ is a key effector cytokines for anti-
tumorigenic NK, CD8 and CD4 T cells affecting cancer 
cells and multiple immune cells [207] and its proper 
induction and signaling is essential for the success of 
immunotherapies in many cancers and is required for 
suppression of BC [208]. IFN-γ levels also correlate with 
the response to therapies and beneficial prognosis in BC 
patients [209] and its signaling within the epithelial [210] 
and endothelial compartment is essential for the success 
of immune checkpoint immunotherapy in BC [211].
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Microbiota
The microbiota plays a significant role in cancers, 
impacting tumor development through immune modula-
tion, biochemical interactions, and effects on cell prolif-
eration and death. Research suggests that over one-fifth 
of malignant tumors may involve microbiota influences 
[212]. Recent research has highlighted a link between 
BC and alterations in the urinary microbiome [213, 214]. 
Females are more susceptible to UTI. Xu et  al., found 
that individuals with BC showed a significantly altered 
urinary microbiota, with decreases in Serratia, Proteus, 
and Roseomonas and increases in Acinetobacter, Anaero-
coccus, and Sphingobacterium [215]. Studies indicate that 
urinary microbiota dysbiosis may influence BC progres-
sion [216, 217], suggesting that different microorganisms 
in male and female urine create distinct local environ-
ments that either support or hinder tumor formation. 
There appears to be a close interaction between sex hor-
mones, the immune system, and the urinary microbiome 
[218]. Sequencing has revealed that Lactobacillales and 
Corynebacterium dominate the urinary microbiota in 
females and males, respectively. Lactobacillales protect 
against UTI, and oral administering Lactobacillus casei 
can delay BC recurrence [219]. Pederzoli et  al., found 
that women with BC had higher Klebsiella levels than 
healthy women [220], likely due to DNA-damaging tox-
ins released by Klebsiella [221]. These findings under-
score that sex differences in urinary microbiota may 
contribute to sex disparities in BC risk. In addition to 
urinary microbiota, gut microbiota also plays a crucial 
role in BC. A recent Mendelian randomization study sug-
gests a causal link between gut microbiota and urologi-
cal cancers, identifying specific bacterial traits associated 
with bladder, prostate, and kidney cancer risks. Notably, 
Bifidobacterium, Actinobacteria, and the Ruminococ-
cus torques group were linked to higher BC risk, while 
Allisonella was associated with a reduced risk of blad-
der and prostate cancer. These findings underscore the 
potential role of gut microbiota in influencing BC risk 
[222]. Study has demonstrated gut microbiota plays a sig-
nificant role in chemical-induced bladder carcinogenesis 
through its metabolism of carcinogens. Using a mouse 
model exposed to BBN, researchers investigated how gut 
microbiota influences BBN-induced BC and its toxicoki-
netics. Mice treated with antibiotics to reduce gut bacte-
rial load showed a 99.99% reduction in bacterial colonies 
and a significant decrease in BC incidence compared to 
untreated mice. Antibiotic treatment reduced BCPN (an 
oxidized BBN metabolite) levels in bladder tissues, sug-
gesting that microbiota promotes BBN metabolism to 
carcinogenic intermediates [223]. Furthermore, analy-
sis of BBN-metabolizing bacteria identified Escherichia, 
Lactobacillus, Corynebacterium, and Staphylococcus as 

active species in mice, with Escherichia being the only 
genus shared with humans. Experiments with germ-free 
mice colonized with human gut microbiota confirmed 
similar BBN metabolism and BCPN production. Addi-
tionally, gut microbiota influenced the toxicokinetic of 
other nitrosamine carcinogens, highlighting a poten-
tial strategy to target microbiota for reducing cancer 
risk associated with chemical exposures. In the future, 
modulation of the microbiome could represent a viable 
approach to reduce BC predisposition and serve as a pre-
ventative intervention against carcinogenesis [223]. How-
ever, no studies have yet demonstrated the role of gut 
microbiota in sex-biased BC.

Metabolism
Male and female metabolisms differ significantly, but 
their role in cancer, especially in the metabolic repro-
gramming of cancer cells, has only recently been 
explored. Carcinogen metabolism is closely related with 
BC, including nitrosamine ketones derived from nico-
tine, polyaromatic hydrocarbons (PAHs) from cigarette 
smoke, and arsenic [224]. To detoxify these carcinogens, 
multiple CYP450 enzymes are involved and encoded by 
CYP1B1, GSTM1, and GSTP1 [225, 226]. Genetic poly-
morphisms in CYP1B1, GSTM1, and GSTP1 are associ-
ated with bladder cancer risk [227]. Sex hormones have 
been shown to regulate expression of these enzymes 
[228]. Researchers found that the reduction of the 
tobacco carcinogen 4-methylnitrosamino-1–3-pyridyl-
1-butanone (NNK) to 4-methylnitrosamino-1–3-pyridyl-
1-butanol (NNAL)—a key detoxification step mediated 
by SDR enzymes (CBR1, 11βHSD1) and AKR enzymes 
(AKR1B10, AKR1 C1, AKR1 C2, AKR1 C4)—is more 
strongly inhibited by female sex hormones and con-
traceptives (estradiol, progesterone, ethinylestradiol, 
drospirenone) than by testosterone, highlighting sex-
specific differences in carcinogen metabolism [229, 230]. 
Female BC patients express more progesterone than male 
[231]. In female BC patients, progesterone may impair 
the removal of toxins from the body by inhibiting the 
CYP450 enzymes. Sex differences have been observed 
in the biotransformation of various molecules, including 
hormones, neurotransmitters, drugs, and xenobiotics, 
impacting their response to environmental exposures, 
usage, accumulation, and elimination. A recent study by, 
Zheng et al., revealed that a single mutation at the His213 
allele of a sulfotransferase gene (SULT1 A1) conferred 
decreased BC risk only in females [232]. The UDP-glu-
curonosyltransferases (UGT)-dependent detoxification 
pathway eliminates xenobiotics and endobiotic [233]. 
Human UGT loci have been closely linked to BC [234]. 
The expression of the UGT enzyme, UGT2B17 in men 
is higher [235]. Interestingly, ARsignaling represses the 
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expression of UGTs in the bladder and prostate, sug-
gesting a strong sex biased role for the UGT detoxifica-
tion pathway in the bladder [236] and prostate [237]. It 
has been shown that downregulation of UGTs is closely 
associated to tumor formation in mice [238] and humans 
[237, 239]. Thus, males and females have different capaci-
ties to metabolize carcinogens and chemotherapeutics.

Mitochondria, another critical player in metabolism, 
are maternally inherited and exhibit strong sexual-spe-
cific activity in normal and pathological conditions [240]. 
One of the outputs of mitochondrial activity is reactive 
oxygen species (ROS), and it has been suggested that 
female mitochondria have a better ability to maintain 
lower ROS levels than male mitochondria in the brain 
[241]. It remains to be shown, however, whether this phe-
nomenon also affects male and female bladders.

Omics, AI, and sex‑specific biomarkers: decoding 
sex differences
Discovering reliable biomarkers and delineating the com-
plex mechanisms from omics data contribute to preci-
sion medicine among individuals and between sexes 
[117, 155, 156]. For example, RNA sequencing and whole 
exon sequencing can illuminate the relationship between 
sex-specific gene expression and genetic anomalies in a 
patient cohort [117, 242]. The recent development of sin-
gle-cell and spatial technologies enhances our ability to 
explore the biomarkers and underlying mechanisms of 
BC at the single-cell level [243–245]. For example, single-
cell RNA sequencing (scRNA-seq) enables the identifi-
cation of distinct cellular subpopulations that play roles 
in tumor aggression or treatment resistance [246]. Addi-
tionally, this technology is instrumental in unraveling 
how abnormalities in sex chromosomes affect cellular 
functionality and fate. This includes studying the impacts 
of the functional silencing of sex chromosomes, allowing 
researchers to link these genomic changes with specific 
alterations in cell transcriptional behavior across differ-
ent cell types [135].

At the same time, spatial omics help researchers map 
these findings within tumor spatial components, offer-
ing clues about the TME that could influence disease 
progression and response to treatment [247, 248]. By 
enabling the dissection of cellular heterogeneity and the 
spatial organization of cells within the bladder tumor 
microenvironment, these technologies have uncovered 
insights into the sex-biased molecular drivers in alter-
ing cell neighborhood, differentiation, and functions. We 
anticipate that implementing large-scale single-cell and 
spatial omics data from BC could improve our under-
standing of sex differences in BC [249–251].

A study using scRNA-seq and spatial transcriptomics 
revealed sex-specific differences in the tumor 

microenvironment. Females showed upregulation of 
genes related to bacterial response and apoptosis, while 
males had higher ribosome biogenesis and MYC activity, 
with more urothelial cells in active cell cycle phases. 
This suggests enhanced barrier defense but potentially 
increased tumor risk in males due to p53 degradation. 
Female fibroblasts had higher collagen gene expression 
[252]. In mouse and human studies of BC using 
scRNA-seq, sex-specific differences in the TME were 
observed. Males showed higher activity in glycolysis, 
gluconeogenesis, PKA, and PI3 K/AKT signaling, while 
females had increased thrombin, endocannabinoid, and 
oxytocin signaling, along with higher expression of tumor 
suppressors EGR2 and EGR3 [47]. Female patients also 
had more CD163⁺ macrophages and B cells, with M2-like 
macrophages producing CXCL13 upon IL-10 and LPS 
stimulation. These immune cell populations were linked 
to poorer recurrence-free survival in both sexes [253, 
254].

Study on patients presenting with hematuria demon-
strated that blood and urine biomarkers for assessing BC 
risk exhibit sex-specific differences and developed dis-
tinct biomarker algorithms for males (u_NSE, s_PAI-1/
tPA, u_midkine, u_NGAL, u_MMP-9/TIMP-1, and 
s_prolactin) and females (IL-12p70, IL-13, midkine, and 
clusterin), which showed high sensitivity and specificity, 
with areas under the receiver operating characteristic 
curve (AUROC) of 0.795 for males and 0.865 for females 
[255]. The incorporation of clinical variables, such as 
infection, further improved the AUROC to 0.822 for 
males and 0.923 for females, highlighting the potential 
for integrating biomarkers with clinical data to enhance 
diagnostic accuracy [255]. However, a key limitation is 
the lack of large-scale, prospective clinical trials that 
validate these findings across diverse populations and 
assess their long-term impact on patient outcomes, par-
ticularly in terms of how these sex-specific approaches 
translate into improved survival rates and quality of life 
for both male and female patients. In addition, we also 
face a range of computational challenges. These include 
integrating different modalities that often display vary-
ing levels of sparsity, handling the high dimensionality 
of datasets, and mitigating the impact of noise across 
multiple samples. We emphasize the potential of graph-
based machine learning to effectively navigate these chal-
lenges by leveraging the complex relationships within 
the data, thus enabling a more robust and integrated 
analysis [256–259]. Moreover, we envision the develop-
ment of sophisticated frameworks capable of integrating 
and synthesizing information from fundamental bio-
logical research to clinical diagnosis and prognosis. AI-
driven foundation models, trained on manually curated 
multi-modal data, emerge as a promising tool [260, 261]. 
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These models provide an end-to-end solution that inter-
prets and integrates large-scale, diverse omics datasets, 
such as sequencing and imaging technologies [262]. 
They are crafted not only to deepen our understanding 
of BC biology [263–265] but also to enhance diagnostic 
accuracy and prognostic precision [266–268]. By utiliz-
ing these advanced technologies, healthcare providers 
can develop treatment strategies that are finely tailored 
and responsive to the unique biological characteristics of 
each patient. This enhanced personalization significantly 
improves the ability to predict and monitor disease pro-
gression and treatment response, leading to improved 
clinical outcomes for BC.

Future directions
In this review, we emphasized the distinct biological 
traits between males and females, but it’s crucial to rec-
ognize that even within the same biological sex, individ-
ual variations do exist. For instance, certain sex-biased 
gene regulators may vary significantly between individu-
als of the same sex, complicating simple male–female 
comparisons. Moreover, an analysis of the National Can-
cer Database revealed that transgender patients with BC 
had significantly worse overall survival compared to their 
cisgender counterparts, with a hazard ratio of 2.86 (95% 
CI: 1.36–6.00), indicating nearly a threefold higher risk 
of death [269]. Consequently, future research should go 
beyond binary sex comparisons, such as examining the 
spectrum of sex-specific effects, isolating individual sex-
biasing factors to avoid confounding, assessing potential 
interactions between factors, and accounting for sex-
specific, age-related changes such as hormone declines. 
We believe that integrating –omics molecular and patient 
data and leveraging emerging AI technologies will enable 
researchers to dissect these complex biological interac-
tions, ultimately improving BC outcomes for all patients 
through more precise and personalized care.
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